Explicit 4-descents on an elliptic curve
J. R. Merriman ; S. Siksek ; N. P. Smart
Acta Arithmetica, Tome 76 (1996), p. 385-404 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206927
@article{bwmeta1.element.bwnjournal-article-aav77i4p385bwm,
     author = {J. R. Merriman and S. Siksek and N. P. Smart},
     title = {Explicit 4-descents on an elliptic curve},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {385-404},
     zbl = {0873.11036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav77i4p385bwm}
}
J. R. Merriman; S. Siksek; N. P. Smart. Explicit 4-descents on an elliptic curve. Acta Arithmetica, Tome 76 (1996) pp. 385-404. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav77i4p385bwm/

[000] [1] B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. I, J. Reine Angew. Math. 212 (1963), 7-25. | Zbl 0118.27601

[001] [2] B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. II, J. Reine Angew. Math. 218 (1965), 79-108. | Zbl 0147.02506

[002] [3] A. Bremner, On the equation y² = x(x²+p), in: Number Theory and Applications, R. A. Mollin (ed.), Kluwer, Dordrecht, 1989, 3-23.

[003] [4] A. Bremner and J. W. S. Cassels, On the equation y² = x(x²+p), Math. Comp. 42 (1984), 257-264. | Zbl 0531.10014

[004] [5] J. W. S. Cassels, Diophantine equations with special reference to elliptic curves, J. London Math. Soc. 41 (1966), 193-291. | Zbl 0138.27002

[005] [6] J. W. S. Cassels, The Mordell-Weil group of curves of genus 2, in: Arithmetic and Geometry Papers Dedicated to I. R. Shafarevich on the Occasion of his Sixtieth Birthday, Vol. 1, Birkhäuser, 1983, 29-60.

[006] [7] J. W. S. Cassels, Local Fields, London Math. Soc. Student Texts, Cambridge University Press, 1986.

[007] [8] J. W. S. Cassels, Lectures on Elliptic Curves, London Math. Soc. Student Texts, Cambridge University Press, 1991.

[008] [9] H. Cohen, A Course in Computational Algebraic Number Theory, Springer, Berlin, 1993. | Zbl 0786.11071

[009] [10] I. Connell, Addendum to a paper of Harada and Lang, J. Algebra 145 (1992), 463-467. | Zbl 0759.11021

[010] [11] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press, 1992. | Zbl 0758.14042

[011] [12] J. Gebel, A. Pethő and H. G. Zimmer, Computing integral points on elliptic curves, Acta. Arith. 68 (1994), 171-192. | Zbl 0816.11019

[012] [13] J. Gebel and H. G. Zimmer, Computing the Mordell-Weil group of an elliptic curve over ℚ, in: Elliptic Curves and Related Topics, H. Kisilevsky and M. Ram Murty (eds.), CRM Proc. Lecture Notes 4, Amer. Math. Soc., 1994. | Zbl 0809.14024

[013] [14] M. J. Greenberg, Lectures on Forms in Many Variables, W. A. Benjamin, 1969.

[014] [15] W. H. Greub, Linear Algebra, Springer, 1967.

[015] [16] M. J. Razar, A relation between the two component of the Tate-Šafarevič group and L(1) for certain elliptic curves, Amer. J. Math. 96 (1974), 127-144. | Zbl 0296.14016

[016] [17] S. Siksek, Descents on Curves of Genus 1, PhD thesis, Exeter University, 1995.

[017] [18] S. Siksek, Infinite descent on elliptic curves, Rocky Mountain J. Math. 25 (1995), 1501-1538. | Zbl 0852.11028

[018] [19] S. Siksek and N. P. Smart, On the complexity of computing the 2-Selmer group of an elliptic curve, preprint, 1995. | Zbl 0915.11032

[019] [20] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986. | Zbl 0585.14026

[020] [21] N. P. Smart, S-integral points on elliptic curves, Proc. Cambridge Philos. Soc. 116 (1994), 391-399. | Zbl 0817.11031

[021] [22] N. P. Smart and N. M. Stephens, Integral points on elliptic curves over number fields, Proc. Cambridge Philos. Soc., to appear, 1996. | Zbl 0881.11054

[022] [23] R. J. Stroeker and N. Tzanakis, Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms, Acta. Arith. 67 (1994), 177-196. | Zbl 0805.11026

[023] [24] H. P. F. Swinnerton-Dyer, Rational zeros of two quadratic forms, Acta. Arith. 9 (1964), 261-270. | Zbl 0128.04702

[024] [25] J. A. Todd, Projective and Analytical Geometry, Pitman, 1947.

[025] [26] A. Weil, Number Theory. An Approach Through History, Birkhäuser, 1984.