On sums of five almost equal prime squares
Jianya Liu ; Tao Zhan
Acta Arithmetica, Tome 76 (1996), p. 369-383 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206926
@article{bwmeta1.element.bwnjournal-article-aav77i4p369bwm,
     author = {Jianya Liu and Tao Zhan},
     title = {On sums of five almost equal prime squares},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {369-383},
     zbl = {0863.11067},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav77i4p369bwm}
}
Jianya Liu; Tao Zhan. On sums of five almost equal prime squares. Acta Arithmetica, Tome 76 (1996) pp. 369-383. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav77i4p369bwm/

[000] [1] F. C. Auluck and S. Chowla, The representation of a large number as a sum of 'almost equal' squares, Proc. Indian Acad. Sci. Sect. A 6 (1937), 81-82. | Zbl 0017.15109

[001] [2] A. Balog and A. Perelli, Exponential sums over primes in short intervals, Acta Math. Hungar. 48 (1986), 223-228. | Zbl 0612.10031

[002] [3] H. Davenport, Multiplicative Number Theory, 2nd ed., revised by H. L. Montgomery, Springer, 1980. | Zbl 0453.10002

[003] [4] A. Ghosh, The distribution of αp² modulo one, Proc. London Math. Soc. (3) 42 (1981), 252-269. | Zbl 0397.10026

[004] [5] G. Harman, Trigonometric sums over primes I, Mathematika 28 (1981), 249-254. | Zbl 0465.10029

[005] [6] L.-K. Hua, Some results in the additive prime number theory, Quart. J. Math. 9 (1938), 68-80. | Zbl 0018.29404

[006] [7] C.-H. Jia, Three prime theorem in short intervals (VII), Acta Math. Sinica 10 (1994), 369-387. | Zbl 0847.11054

[007] [8] J. Y. Liu and T. Zhan, Estimation of exponential sums over primes in short intervals (I), to appear. | Zbl 0922.11070

[008] [9] J. Y. Liu and T. Zhan, Estimation of exponential sums over primes in short intervals (II), in: Proceedings of the Halberstam Conference on Analytic Number Theory, Birkhäuser, 1996, to appear. | Zbl 0858.11044

[009] [10] C. D. Pan and C. B. Pan, On estimations of trigonometric sums over primes in short intervals (III), Chinese Ann. Math. Ser. B 11 (1990), 138-147. | Zbl 0714.11050

[010] [11] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed., revised by D. R. Heath-Brown, Oxford University Press, 1988. | Zbl 0042.07901

[011] [12] R. C. Vaughan, An elementary method in prime number theory, in: Recent Progress in Analytic Number Theory, H. Halberstam and C. Hooley (eds.), Academic Press, 1981, 341-348.

[012] [13] I. M. Vinogradov, Estimation of certain trigonometric sums with prime variables, Izv. Akad. Nauk SSSR Ser. Mat. 3 (1939), 371-398 (in Russian).

[013] [14] E. M. Wright, The representation of a number as a sum of three or four squares, Proc. London Math. Soc. 42 (1937), 481-500. | Zbl 0016.29004

[014] [15] T. Zhan, On the representation of large odd integers as sum of three almost equal primes, Acta Math. Sinica (N.S.) 7 (1991), 159-272. | Zbl 0742.11048