@article{bwmeta1.element.bwnjournal-article-aav77i3p207bwm, author = {Chao Hua Jia}, title = {On the exceptional set of Goldbach numbers in a short interval}, journal = {Acta Arithmetica}, volume = {76}, year = {1996}, pages = {207-287}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav77i3p207bwm} }
Chao Hua Jia. On the exceptional set of Goldbach numbers in a short interval. Acta Arithmetica, Tome 76 (1996) pp. 207-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav77i3p207bwm/
[000] [1] P. X. Gallagher, A large sieve density estimate near σ = 1, Invent. Math. 11 (1970), 329-339. | Zbl 0219.10048
[001] [2] D. R. Heath-Brown and H. Iwaniec, On the difference between consecutive primes, Invent. Math. 55 (1979), 49-69. | Zbl 0424.10028
[002] [3] L. K. Hua, Some results in the additive prime number theory, Quart. J. Math. Oxford 9 (1938), 68-80. | Zbl 0018.29404
[003] [4] M. N. Huxley, On the difference between consecutive primes, Invent. Math. 15 (1972), 164-170. | Zbl 0241.10026
[004] [5] M. N. Huxley, Large values of Dirichlet polynomials III, Acta Arith. 26 (1975), 435-444. | Zbl 0268.10026
[005] [6] H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith. 37 (1980), 307-320. | Zbl 0444.10038
[006] [7] C. H. Jia, Three primes theorem in a short interval (III), Sci. China Ser. A 34 (1991), 1039-1056. | Zbl 0743.11055
[007] [8] C. H. Jia, Three primes theorem in a short interval (V), Acta Math. Sinica (N.S.) 7 (1991), 135-170. | Zbl 0735.11051
[008] [9] C. H. Jia, On Pjateckiĭ-Šapiro prime number theorem (II), Sci. China Ser. A 36 (1993), 913-926. | Zbl 0790.11063
[009] [10] C. H. Jia, Goldbach numbers in short interval, Sci. China Ser. A 24 (1994), 1233-1259 (in Chinese); I. Sci. China Ser. A 38 (1995), 385-406; II. Sci. China Ser. A 38 (1995), 513-523.
[010] [11] C. H. Jia, On the difference between consecutive primes, Sci. China Ser. A 38 (1995), 1163-1186. | Zbl 0844.11057
[011] [12] H. Li, On the Goldbach numbers in short interval, Sci. China Ser. A, to appear.
[012] [13] H. Mikawa, On the exceptional set in Goldbach's problem, Tsukuba J. Math. 16 (1992), 513-543. | Zbl 0778.11054
[013] [14] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, Berlin, 1971. | Zbl 0216.03501
[014] [15] Chengdong Pan and Chengbiao Pan, Goldbach Conjecture, Science Press, Beijing, 1981 (in Chinese).
[015] [16] Chengdong Pan and Chengbiao Pan, The Basis of Analytic Number Theory, Science Press, Beijing, 1991 (in Chinese).
[016] [17] A. Perelli and J. Pintz, On the exceptional set for Goldbach's problem in short intervals, J. London Math. Soc. (2) 47 (1993), 41-49. | Zbl 0806.11042
[017] [18] K. Ramachandra, On the number of Goldbach numbers in small intervals, J. Indian Math. Soc. 37 (1973), 157-170. | Zbl 0326.10041
[018] [19] B. Saffari and R. C. Vaughan, On the fractional parts of x/n and related sequences II, Ann. Inst. Fourier (Grenoble) 27 (1977), 1-30. | Zbl 0379.10023
[019] [20] P. Shiu, A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math. 313 (1980), 161-170. | Zbl 0412.10030
[020] [21] N. Watt, Short intervals almost all containing primes, Acta Arith. 72 (1995), 131-167. | Zbl 0832.11030