Hyperelliptic modular curves X₀*(N) with square-free levels
Yuji Hasegawa ; Ki-ichiro Hashimoto
Acta Arithmetica, Tome 76 (1996), p. 179-193 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206917
@article{bwmeta1.element.bwnjournal-article-aav77i2p179bwm,
     author = {Yuji Hasegawa and Ki-ichiro Hashimoto},
     title = {Hyperelliptic modular curves X0*(N) with square-free levels},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {179-193},
     zbl = {0886.11023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav77i2p179bwm}
}
Yuji Hasegawa; Ki-ichiro Hashimoto. Hyperelliptic modular curves X₀*(N) with square-free levels. Acta Arithmetica, Tome 76 (1996) pp. 179-193. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav77i2p179bwm/

[000] [1] A. O. L. Atkin and J. Lehner, Hecke operators on Γ₀(m), Math. Ann. 185 (1970), 134-160.

[001] [2] A. O. L. Atkin and D. J. Tingley, Numerical tables on elliptic curves, in: Modular Functions of One Variable IV, B. Birch and W. Kuyk (eds.), Lecture Notes in Math. 476, Springer, Berlin, 1975, 74-144.

[002] [3] P. Deligne et M. Rapoport, Les schémas de modules de courbes elliptiques, in: Modular Functions of One Variable II, P. Deligne and W. Kuyk (eds.), Lecture Notes in Math. 349, Springer, Berlin, 1973, 143-316. | Zbl 0281.14010

[003] [4] M. Eichler, The basis problem for modular forms and the traces of the Hecke operators, in: Modular Functions of One Variable I, W. Kuyk (ed.), Lecture Notes in Math. 320, Springer, Berlin, 1973, 75-151.

[004] [5] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977.

[005] [6] Y. Hasegawa, Table of quotient curves of modular curves X₀(N) with genus 2, Proc. Japan Acad. Ser. A 71 (1995), 235-239. | Zbl 0873.11040

[006] [7] K. Hashimoto, On Brandt matrices of Eichler orders, Mem. School Sci. Engrg. Waseda Univ. 59 (1995), 143-165.

[007] [8] H. Hijikata, Explicit formula of the traces of Hecke operators for Γ₀(N), J. Math. Soc. Japan 26 (1974), 56-82. | Zbl 0266.12009

[008] [9] J. Igusa, Kroneckerian model of fields of elliptic modular functions, Amer. J. Math. 81 (1959), 561-577. | Zbl 0093.04502

[009] [10] P. G. Kluit, Hecke operators on Γ*(N) and their traces , Dissertation of Vrije Universiteit, Amsterdam, 1979.

[010] [11] J. Lehner and M. Newman, Weierstrass points of Γ₀(N), Ann. of Math. 79 (1964), 360-368. | Zbl 0124.29203

[011] [12] N. Murabayashi, On normal forms of modular curves of genus 2, Osaka J. Math. 29 (1992), 405-418. | Zbl 0774.14025

[012] [13] A. P. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449-462. | Zbl 0314.10018

[013] [14] A. P. Ogg, Modular functions, in: The Santa Cruz Conference on Finite Groups, B. Cooperstein and G. Mason (eds.), Proc. Sympos. Pure Math. 37, Amer. Math. Soc., Providence, R.I., 1980, 521-532.

[014] [15] A. Pizer, An algorithm for computing modular forms on Γ₀(N), J. Algebra 64 (1980), 340-390. | Zbl 0433.10012

[015] [16] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton Univ. Press, 1971. | Zbl 0221.10029

[016] [17] M. Yamauchi, On the traces of Hecke operators for a normalizer of Γ₀(N), J. Math. Kyoto Univ. 13 (1973), 403-411. | Zbl 0267.10038