On a characterization of Shimura's elliptic curve over ℚ(√37)
Masanari Kida
Acta Arithmetica, Tome 76 (1996), p. 157-171 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206915
@article{bwmeta1.element.bwnjournal-article-aav77i2p157bwm,
     author = {Masanari Kida},
     title = {On a characterization of Shimura's elliptic curve over $\mathbb{Q}$($\surd$37)},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {157-171},
     zbl = {0876.11026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav77i2p157bwm}
}
Masanari Kida. On a characterization of Shimura's elliptic curve over ℚ(√37). Acta Arithmetica, Tome 76 (1996) pp. 157-171. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav77i2p157bwm/

[000] [1] B. J. Birch and W. Kuyk (eds.), Modular Functions of One Variable IV, Lecture Notes in Math. 476, Springer, 1975.

[001] [2] W. Casselman, On abelian varieties with many endomorphisms and a conjecture of Shimura's, Invent. Math. 12 (1971), 225-236. | Zbl 0213.47303

[002] [3] J. E. Cremona, Modular symbols for Γ₁(N) and elliptic curves with everywhere good reduction, Math. Proc. Cambridge Philos. Soc. 111 (1992), 199-218. | Zbl 0752.11022

[003] [4] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press, 1992. | Zbl 0758.14042

[004] [5] P. Deligne et M. Rapoport, Les schémas de modules de courbes elliptiques, in: Modular Functions of One Variable III, Lecture Notes in Math. 349, Springer, 1973, 143-316. | Zbl 0281.14010

[005] [6] O. Hemer, On the Diophantine equation y²+k=x³, doctoral dissertation, Uppsala, 1952. | Zbl 0049.31004

[006] [7] F. Klein und R. Fricke, Vorlesungen über die Theorie der elliptischen Modulfunktionen II, Teubner, 1892.

[007] [8] A. P. Ogg, Diophantine equations and modular forms, Bull. Amer. Math. Soc. 81 (1975), 14-27. | Zbl 0316.14012

[008] [9] A. Pethö and B. M. M. de Weger, Products of prime powers in binary recurrence sequences. Part I, The hyperbolic case, with an application to the generalized Ramanujan-Nagell equation, Math. Comp. 47 (1986), 713-727. | Zbl 0623.10011

[009] [10] R. G. E. Pinch, Elliptic curves over number fields, doctoral dissertation, Oxford University, 1982.

[010] [11] K. A. Ribet, Endomorphisms of semi-stable abelian varieties over number fields, Ann. of Math. 101 (1975), 555-562. | Zbl 0305.14016

[011] [12] B. Setzer, Elliptic curves with good reduction everywhere over quadratic fields and having rational j-invariant, Illinois J. Math. 25 (1981), 233-245. | Zbl 0471.14019

[012] [13] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Publ. Math. Soc. Japan 11, Iwanami Shoten and Princeton University Press, 1971. | Zbl 0221.10029

[013] [14] G. Shimura, Class fields over real quadratic fields and Hecke operators, Ann. of Math. 95 (1972), 130-190. | Zbl 0255.10032

[014] [15] G. Shimura, On the factor of the Jacobian variety of a modular function field, J. Math. Soc. Japan 25 (1973), 523-544. | Zbl 0266.14017

[015] [16] K. Shiota, On the explicit models of Shimura's elliptic curves, J. Math. Soc. Japan 38 (1986), 649-659. | Zbl 0608.14023

[016] [17] J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, Springer, 1986.

[017] [18] R. P. Steiner, On Mordell's equation y²-k=x³: A problem of Stolarsky, Math. Comp. 46 (1986), 703-714. | Zbl 0601.10011

[018] [19] N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99-132. | Zbl 0657.10014

[019] [20] N. Tzanakis and B. M. M. de Weger, How to explicitly solve a Thue-Mahler equation, Comp. Math. 84 (1992), 223-288; Corrections 89 (1993), 241-242. | Zbl 0773.11023

[020] [21] M. J. Vélu, Isogénies entre courbes elliptiques, C. R. Acad. Sci. Paris Sér. A 273 (1971), 238-241. | Zbl 0225.14014

[021] [22] M. Waldschmidt, A lower bound for linear forms in logarithms, Acta Arith. 37 (1980), 257-283. | Zbl 0357.10017