On values of L-functions of totally real algebraic number fields at integers
Shigeaki Tsuyumine
Acta Arithmetica, Tome 76 (1996), p. 359-392 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206904
@article{bwmeta1.element.bwnjournal-article-aav76i4p359bwm,
     author = {Shigeaki Tsuyumine},
     title = {On values of L-functions of totally real algebraic number fields at integers},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {359-392},
     zbl = {0899.11020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav76i4p359bwm}
}
Shigeaki Tsuyumine. On values of L-functions of totally real algebraic number fields at integers. Acta Arithmetica, Tome 76 (1996) pp. 359-392. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav76i4p359bwm/

[000] [1] A. G. van Asch, Modular forms of half-integral weight, some explicit arithmetic, Math. Ann. 262 (1983), 77-89. | Zbl 0508.10015

[001] [2] A. O. L. Atkin and J. Lehner, Hecke operator on Γ₀(m), Math. Ann. 185 (1970), 134-160.

[002] [3] P. Bachmann, Die Arithmetik von quadratischen Formen, part I, Leipzig, 1898.

[003] [4] P. T. Bateman, On the representations of a number as the sum of three squares, Trans. Amer. Math. Soc. 71 (1951), 70-101. | Zbl 0043.04603

[004] [5] H. Cohen, Variations sur un thème de Siegel et Hecke, Acta Arith. 30 (1976), 63-93. | Zbl 0291.10021

[005] [6] A. Costa, Modular forms and class number congruence, Acta Arith. 61 (1992), 101-118. | Zbl 0773.11066

[006] [7] P. Deligne and K. A. Ribet, Values of abelian L-functions at negative integers over totally real fields, Invent. Math. 59 (1980), 227-286. | Zbl 0434.12009

[007] [8] H. J. Godwin, Real quartic fields with small discriminant, J. London Math. Soc. 31 (1956), 478-485. | Zbl 0071.03401

[008] [9] H. G. Grundman, The arithmetic genus of Hilbert modular varieties over non-Galois cubic fields, J. Number Theory 37 (1991), 343-365. | Zbl 0715.11023

[009] [10] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Springer, Berlin, 1985.

[010] [11] E. Hecke, Theorie der Eisensteinschen Reihen höhere Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Math. Sem. Univ. Hamburg 5 (1927), 199-224. | Zbl 53.0345.02

[011] [12] E. Hecke, Über die L-funktionen und den Dirichletschen Primzahlsatz für einen beliebigen Zahlkörper, Nachr. Gesell. Wiss. Göttingen 1917, 299-318. | Zbl 46.0256.03

[012] [13] H. Hida, On the values of Hecke's L-functions at nonpositive integers, J. Math. Soc. Japan 30 (1978), 249-278. | Zbl 0371.12014

[013] [14] H. Iwaniec, Fourier coefficients of modular forms of half-integral weight, Invent. Math. 87 (1987), 385-401. | Zbl 0606.10017

[014] [15] M. Newman, Bounds for class numbers, in: Proc. Sympos. Pure Math. 8, Amer. Math. Soc., 1965, 70-77.

[015] [16] R. Okazaki, On evaluation of L-functions over real quadratic fields, J. Math. Kyoto Univ. 31 (1994), 1125-1153. | Zbl 0776.11071

[016] [17] R. Schulze-Pillot, Thetareihen positiv definiter quadratischer Formen, Invent. Math. 75 (1984), 283-299. | Zbl 0533.10021

[017] [18] G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45 (1978), 637-679. | Zbl 0394.10015

[018] [19] T. Shintani, On evaluation of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sci. Univ. Tokyo 23 (1976), 393-417. | Zbl 0349.12007

[019] [20] C. L. Siegel, Berechnung von Zetafunktionen an ganzzahligen Stellen, Nachr. Akad. Wiss. Göttingen, 1969, 87-102. | Zbl 0186.08804

[020] [21] S. Tsuyumine, Cusp forms for Γ₀(p) of weight 2, Bull. Fac. Ed. Mie Univ. 45 (1994), 7-25.

[021] [22] S. Tsuyumine, Evaluation of zeta functions of totally real algebraic number fields at non-positive integers, preprint. | Zbl 0899.11020