Fermat quotient of cyclotomic units
Tsutomu Shimada
Acta Arithmetica, Tome 76 (1996), p. 335-358 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206903
@article{bwmeta1.element.bwnjournal-article-aav76i4p335bwm,
     author = {Tsutomu Shimada},
     title = {Fermat quotient of cyclotomic units},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {335-358},
     zbl = {0867.11076},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav76i4p335bwm}
}
Tsutomu Shimada. Fermat quotient of cyclotomic units. Acta Arithmetica, Tome 76 (1996) pp. 335-358. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav76i4p335bwm/

[000] [1] L. Carlitz, A generalization of Maillet's determinant and a bound for the first factor of the class number, Proc. Amer. Math. Soc. 12 (1961), 256-261. | Zbl 0131.03602

[001] [2] H. W. Leopoldt, Über Fermatquotienten von Kreiseinheiten und Klassenzahlformeln modulo p, Rend. Circ. Mat. Palermo (2) 9 (1960), 39-50.

[002] [3] C. Levesque, p-independent systems of units, Proc. Japan Acad. Ser. A 68 (1992), 239-241.

[003] [4] J. W. Sands, Kummer's and Iwasawa's version of Leopoldt's conjecture, Canad. Math. Bull. 31 (1988), 338-346. | Zbl 0614.12002

[004] [5] K. Tateyama, Maillet's determinant, Sci. Papers College Gen. Edu. Univ. Tokyo 32 (1982), 97-100. | Zbl 0508.12006

[005] [6] L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1982 | Zbl 0484.12001