On characterization of Dirichlet L-functions
Takeo Funakura
Acta Arithmetica, Tome 76 (1996), p. 305-315 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206901
@article{bwmeta1.element.bwnjournal-article-aav76i4p305bwm,
     author = {Takeo Funakura},
     title = {On characterization of Dirichlet L-functions},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {305-315},
     zbl = {0865.11060},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav76i4p305bwm}
}
Takeo Funakura. On characterization of Dirichlet L-functions. Acta Arithmetica, Tome 76 (1996) pp. 305-315. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav76i4p305bwm/

[000] [1] T. M. Apostol, Dirichlet L-functions and primitive characters, Proc. Amer. Math. Soc. 31 (1972), 384-386. | Zbl 0239.10023

[001] [2] T. M. Apostol, A note on periodic completely multiplicative arithmetical functions, Amer. Math. Monthly 83 (1975), 39-40.

[002] [3] K. Chandrasekharan and R. Narashimhan, Hecke's functional equation and arithmetical identities, Ann. of Math. 74 (1961), 1-23. | Zbl 0107.03702

[003] [4] H. Hamburger, Über die Riemannsche Funktionalgleichung der ζ-Funktion, Math. Z. 10 (1921), 240-254; Math. Z. 11 (1921), 224-245; Math. Z. 13 (1922), 283-311. | Zbl 48.1210.03

[004] [5] H. Joris, On the evaluation of Gaussian sums for nonprimitive Dirichlet characters, Enseign. Math. 23 (1977), 13-l8 | Zbl 0352.10018

[005] [6] W. Schnee, Die Funktionalgleichung der Zeta-Funktion und der Dirichletschen Reihen mit periodischen Koeffizienten, Math. Z. 31 (1930), 378-390.

[006] [7] C. Siegel, Bemerkungen zu einem Satz von Hamburger über die Funktionalgeichung der Riemannschen Zetafunktion, Math. Ann. 86 (1922), 276-279. | Zbl 48.1216.01

[007] [8] M. Toyoizumi, On certain infinite products, Mathematika 30 (1983), 4-10; II, Math. Ann. 31 (1984), 1-11; III, Acta Arith. 51 (1988), 221-231. | Zbl 0523.10013