Primitive lattice points in convex planar domains
Martin N. Huxley ; Werner Georg Nowak
Acta Arithmetica, Tome 76 (1996), p. 271-283 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206899
@article{bwmeta1.element.bwnjournal-article-aav76i3p271bwm,
     author = {Martin N. Huxley and Werner Georg Nowak},
     title = {Primitive lattice points in convex planar domains},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {271-283},
     zbl = {0861.11056},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav76i3p271bwm}
}
Martin N. Huxley; Werner Georg Nowak. Primitive lattice points in convex planar domains. Acta Arithmetica, Tome 76 (1996) pp. 271-283. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav76i3p271bwm/

[000] [1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, New York, 1976.

[001] [2] R. C. Baker, The square-free divisor problem, Quart. J. Math. Oxford 45 (1994), 269-277. | Zbl 0812.11053

[002] [3] J. L. Hafner, New omega theorems for two classical lattice point problems, Invent. Math. 63 (1981), 181-186. | Zbl 0458.10031

[003] [4] D. R. Heath-Brown, The Piatetski-Shapiro prime-number theorem, J. Number Theory 16 (1983), 242-266. | Zbl 0513.10042

[004] [5] D. Hensley, The number of lattice points within a contour and visible from the origin, Pacific J. Math. 166 (1994), 295-304. | Zbl 0849.11078

[005] [6] E. Hlawka, Über Integrale auf konvexen Körpern I, Monatsh. Math. 54 (1950), 1-36.

[006] [7] E. Hlawka, Über Integrale auf konvexen Körpern II, Monatsh. Math. 54 (1950), 81-99. | Zbl 0036.30902

[007] [8] E. Hlawka, Über die Zetafunktion konvexer Körper, Monatsh. Math. 54 (1950), 100-107. | Zbl 0036.30903

[008] [9] M. N. Huxley, Exponential sums and lattice points II, Proc. London Math. Soc. 66 (1993), 279-301. | Zbl 0820.11060

[009] [10] M. N. Huxley, The mean lattice point discrepancy, Proc. Edinburgh Math. Soc. 38 (1995), 523-531. | Zbl 0845.11036

[010] [11] M. N. Huxley, Area, Lattice Points, and Exponential Sums, Oxford University Press, to appear.

[011] [12] A. Ivić, The Riemann Zeta-function, Wiley, New York, 1985. | Zbl 0556.10026

[012] [13] I. Kátai, The number of lattice points in a circle, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 8 (1965), 39-60. | Zbl 0151.04401

[013] [14] E. Krätzel, Lattice Points, Deutsch. Verlag Wiss., Berlin, 1988.

[014] [15] H. L. Montgomery and R. C. Vaughan, The distribution of squarefree numbers, in: Recent Progress in Analytic Number Theory, Proc. Durham Sympos. 1979, Vol. I, H. Halberstam and C. Hooley (eds.), Academic Press, London, 1981, 247-256.

[015] [16] B. Z. Moroz, On the number of primitive lattice points in plane domains, Monatsh. Math. 99 (1985), 37-43. | Zbl 0551.10038

[016] [17] W. G. Nowak, An Ω-estimate for the lattice rest of a convex planar domain, Proc. Roy. Soc. Edinburgh Sect. A 100 (1985), 295-299. | Zbl 0582.10033

[017] [18] W. G. Nowak, On the average order of the lattice rest of a convex planar domain, Proc. Cambridge Philos. Soc. 98 (1985), 1-4. | Zbl 0552.10032

[018] [19] W. G. Nowak, Primitive lattice points in rational ellipses and related arithmetic functions, Monatsh. Math. 106 (1988), 57-63. | Zbl 0678.10032

[019] [20] W. G. Nowak and M. Schmeier, Conditional asymptotic formulae for a class of arithmetic functions, Proc. Amer. Math. Soc. 103 (1988), 713-717. | Zbl 0658.10052

[020] [21] K. Prachar, Primzahlverteilung, Springer, Berlin, 1957.