On the family of Thue equations x³ - (n-1)x²y - (n+2)xy² - y³ = k
M. Mignotte ; A. Pethő ; F. Lemmermeyer
Acta Arithmetica, Tome 76 (1996), p. 245-269 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206898
@article{bwmeta1.element.bwnjournal-article-aav76i3p245bwm,
     author = {M. Mignotte and A. Peth\H o and F. Lemmermeyer},
     title = {On the family of Thue equations x$^3$ - (n-1)x$^2$y - (n+2)xy$^2$ - y$^3$ = k},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {245-269},
     zbl = {0862.11028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav76i3p245bwm}
}
M. Mignotte; A. Pethő; F. Lemmermeyer. On the family of Thue equations x³ - (n-1)x²y - (n+2)xy² - y³ = k. Acta Arithmetica, Tome 76 (1996) pp. 245-269. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav76i3p245bwm/

[000] [BD] A. Baker and H. Davenport, The equations 3x²-2 = y² and 8x²-7 = z², Quart. J. Math. Oxford 20 (1969), 129-137.

[001] [BSt] A. Baker and C. L. Stewart, On effective approximations to cubic irrationals, in: New Advances in Transcendence Theory, Proc. Sympos., Durham 1986, A. Baker (ed.), Cambridge Univ. Press, 1988, 1-24.

[002] [BW] A. Baker and G. Wüstholz, Linear forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62. | Zbl 0788.11026

[003] [GyP] K. Győry and Z. Z. Papp, Norm form equations and explicit lower bounds for linear forms with algebraic coefficients, in: Studies in Pure Mathematics (to the memory of Paul Turán), P. Erdős (ed.), Akadémiai Kiadó and Birkhäuser, Budapest, 1983, 245-257.

[004] [LMN] M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321.

[005] [LP] F. Lemmermeyer and A. Pethő, Simplest number fields, Manuscripta Math. 88 (1995), 53-58. | Zbl 0851.11059

[006] [LeP] G. Lettl and A. Pethő, Complete solution of a family of quartic Thue equations, Abh. Math. Sem. Univ. Hamburg 65 (1995), 365-383. | Zbl 0853.11021

[007] [M] M. Mignotte, Verification of a conjecture of E. Thomas, J. Number Theory 44 (1993), 172-177.

[008] [MPR] M. Mignotte, A. Pethő and R. Roth, Complete solutions of quartic Thue and index form equations, Math. Comp. 65 (1996), 341-354. | Zbl 0853.11022

[009] [MT] M. Mignotte and N. Tzanakis, On a family of cubics, J. Number Theory 39 (1991), 41-49. | Zbl 0734.11025

[010] [P1] A. Pethő, On the representation of 1 by binary cubic forms with positive discriminant, in: Number Theory, Ulm 1987, H. P. Schlickewei and E. Wirsing (eds.), Lecture Notes in Math. 1380, Springer, 1989, 185-196.

[011] [P2] A. Pethő, Complete solutions to a family of quartic diophantine equations, Math. Comp. 57 (1991), 777-798. | Zbl 0738.11028

[012] [PSch] A. Pethő und R. Schulenberg, Effektives Lösen von Thue Gleichungen, Publ. Math. Debrecen 34 (1987), 189-196.

[013] [T1] E. Thomas, Complete solutions to a family of cubic diophantine equations, J. Number Theory 34 (1990), 235-250. | Zbl 0697.10011

[014] [T2] E. Thomas, Solutions to certain families of Thue equations, J. Number Theory 43 (1993), 319-369. | Zbl 0774.11013