@article{bwmeta1.element.bwnjournal-article-aav76i2p149bwm, author = {Henri Faure and Henri Chaix}, title = {Minoration de discr\'epance en dimension deux}, journal = {Acta Arithmetica}, volume = {76}, year = {1996}, pages = {149-164}, language = {fr}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav76i2p149bwm} }
Henri Faure; Henri Chaix. Minoration de discrépance en dimension deux. Acta Arithmetica, Tome 76 (1996) pp. 149-164. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav76i2p149bwm/
[000] [1] J. Beck, A two dimensional van Aardenne-Ehrenfest theorem in irregularities of distribution, Compositio Math. 72 (1989), 269-339. | Zbl 0691.10041
[001] [2] H. Faure, Discrépance de suites associées à un système de numération (en dimension s), Acta Arith. 41 (1982), 337-351. | Zbl 0442.10035
[002] [3] H. Faure et H. Chaix, Minoration de discrépance en dimension 2, C. R. Acad. Sci. Paris Sér. I 319 (1994), 1-4. | Zbl 0809.11040
[003] [4] G. Halász, On Roth's method in the theory of irregularities of point distribution, in: Recent Progress in Analytic Number Theory, Vol. 2, Academic Press, 1981, 79-94.
[004] [5] J. H. Halton, On the efficiency of certain quasi-random points in evaluating multi-dimensional integrals, Numer. Math. 2 (1960), 84-90. | Zbl 0090.34505
[005] [6] H. Niederreiter, Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987), 273-337. | Zbl 0626.10045
[006] [7] H. Niederreiter, Low discrepancy and low dispersion sequences, J. Number Theory 30 (1988), 51-70. | Zbl 0651.10034
[007] [8] K. F. Roth, On irregularities of distribution, Mathematika 1 (1954), 73-79. | Zbl 0057.28604
[008] [9] W. M. Schmidt, Irregularities of distribution, VII, Acta Arith. 21 (1972), 45-50. | Zbl 0244.10035
[009] [10] I. M. Sobol', On the distribution of points in a cube and the approximate evaluation of integrals, U.S.S.R. Comput. Math. and Math. Phys. 7 (1967), 86-112.
[010] [11] S. Srinivasan, On two dimensional Hammersley sequences, J. Number Theory 10 (1978), 421-429. | Zbl 0393.10051