Almost all short intervals containing prime numbers
Chaohua Jia
Acta Arithmetica, Tome 76 (1996), p. 21-84 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206887
@article{bwmeta1.element.bwnjournal-article-aav76i1p21bwm,
     author = {Chaohua Jia},
     title = {Almost all short intervals containing prime numbers},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {21-84},
     zbl = {0841.11043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav76i1p21bwm}
}
Chaohua Jia. Almost all short intervals containing prime numbers. Acta Arithmetica, Tome 76 (1996) pp. 21-84. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav76i1p21bwm/

[000] [1] H. Cramér, On the order of magnitude of the difference between consecutive prime numbers, Acta Arith. 2 (1937), 23-46.

[001] [2] J.-M. Deshouillers and H. Iwaniec, Power mean values of the Riemann zeta-function, Mathematika 29 (1982), 202-212.

[002] [3] G. Harman, Primes in short intervals, Math. Z. 180 (1982), 335-348. | Zbl 0482.10040

[003] [4] G. Harman, On the distribution of αp modulo one, J. London Math. Soc. (2) 27 (1983), 9-18. | Zbl 0504.10018

[004] [5] D. R. Heath-Brown, Finding primes by sieve methods, Proc. 1982 ICM, Warsaw, 1983, Vol. 1, PWN-Polish Sci. Publ., Warszawa, 1984, 487-492.

[005] [6] D. R. Heath-Brown and H. Iwaniec, On the difference between consecutive primes, Invent. Math. 55 (1979), 49-69. | Zbl 0424.10028

[006] [7] M. N. Huxley, On the difference between consecutive primes, Invent. Math. 15 (1972), 164-170. | Zbl 0241.10026

[007] [8] H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith. 37 (1980), 307-320. | Zbl 0444.10038

[008] [9] H. Iwaniec and J. Pintz, Primes in short intervals, Monatsh. Math. 98 (1984), 115-143. | Zbl 0544.10040

[009] [10] C. Jia, On Pjateckiĭ-Šapiro prime number theorem (II), Sci. China Ser. A 36 (1993), 913-926. | Zbl 0790.11063

[010] [11] C. Jia, Goldbach numbers in short interval, Sci. China Ser. A 24 (1994), 1233-1259 (in Chinese); I. Sci. China Ser. A 38 (1995), 385-406; II. Sci. China Ser. A 38 (1995), 513-523.

[011] [12] C. Jia, On the difference between consecutive primes, Sci. China Ser. A 25 (1995), 785-804 (in Chinese); Sci. China Ser. A 38 (1995), 1163-1186.

[012] [13] C. Jia, On the exceptional set of Goldbach numbers in the short interval, Acta Arith., to appear. | Zbl 0863.11066

[013] [14] H. Li, On the Goldbach numbers in short interval, Sci. China Ser. A 38 (1995), 641-652.

[014] [15] H. Li, Primes in short intervals, preprint. | Zbl 0875.11016

[015] [16] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, Berlin, 1971. | Zbl 0216.03501

[016] [17] Chengdong Pan and Chengbiao Pan, Goldbach Conjecture, Science Press, Beijing, 1981 (in Chinese).

[017] [18] Chengdong Pan and Chengbiao Pan, The Basis of Analytic Number Theory, Science Press, Beijing, 1991 (in Chinese).

[018] [19] A. Selberg, On the normal density of primes in short intervals, and the difference between consecutive primes, Arch. Math. Naturvid. 47 (1943), 87-105. | Zbl 0063.06869

[019] [20] N. Watt, Short intervals almost all containing primes, Acta Arith. 72 (1995), 131-167. | Zbl 0832.11030

[020] [21] N. Watt, Kloosterman sums and a mean value for Dirichlet polynomials, J. Number Theory, to appear. | Zbl 0837.11050