On the diophantine equation D₁x⁴ -D₂y² = 1
Maohua Le
Acta Arithmetica, Tome 76 (1996), p. 1-9 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206886
@article{bwmeta1.element.bwnjournal-article-aav76i1p1bwm,
     author = {Maohua Le},
     title = {On the diophantine equation D1x4 -D2y2 = 1},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {1-9},
     zbl = {0893.11014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav76i1p1bwm}
}
Maohua Le. On the diophantine equation D₁x⁴ -D₂y² = 1. Acta Arithmetica, Tome 76 (1996) pp. 1-9. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav76i1p1bwm/

[000] [1] M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321. | Zbl 0843.11036

[001] [2] M.-H. Le, A necessary and sufficient condition for the equation x⁴ - Dy² = 1 to having positive integer solutions, Chinese Sci. Bull. 30 (1985), 1698.

[002] [3] M.-H. Le, A note on the diophantine equation x2p-Dy²=1, Proc. Amer. Math. Soc. 107 (1989), 27-34.

[003] [4] W. Ljunggren, Über die Gleichung x⁴ - Dy² = 1, Arch. Math. Naturv. 45 (5) (1942), 61-70. | Zbl 68.0069.01

[004] [5] K. Petr, Sur l'équation de Pell, Časopis Pest. Mat. Fys. 56 (1927), 57-66 (in Czech).

[005] [6] H.-M. Wu, On the number of solutions of the diophantine equation x⁴ - Dy² = 1, J. Zhanjiang Teachers College Nat. Sci. 1995 (1), 12-15 (in Chinese).

[006] [7] W.-S. Zhu, The solvability of equation x⁴ - Dy² = 1, Acta Math. Sinica 28 (1985), 681-683 (in Chinese). | Zbl 0587.10009