Metric properties of some special p-adic series expansions
Arnold Knopfmacher ; John Knopfmacher
Acta Arithmetica, Tome 76 (1996), p. 11-19 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206885
@article{bwmeta1.element.bwnjournal-article-aav76i1p11bwm,
     author = {Arnold Knopfmacher and John Knopfmacher},
     title = {Metric properties of some special p-adic series expansions},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {11-19},
     zbl = {0858.11040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav76i1p11bwm}
}
Arnold Knopfmacher; John Knopfmacher. Metric properties of some special p-adic series expansions. Acta Arithmetica, Tome 76 (1996) pp. 11-19. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav76i1p11bwm/

[000] [1] J. Barrionuevo, R. M. Burton, K. Dajani and C. Kraaikamp, Ergodic properties of generalized Lüroth series, Acta Arith. 74 (1996), 311-327. | Zbl 0848.11039

[001] [2] P. Billingsley, Ergodic Theory and Information, Wiley, 1965. | Zbl 0141.16702

[002] [3] W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd ed., Wiley, 1968. | Zbl 0155.23101

[003] [4] J. Galambos, Representations of Real Numbers by Infinite Series, Springer, 1976.

[004] [5] H. Jager and C. de Vroedt, Lüroth series and their ergodic properties, Nederl. Akad. Wetensch. Proc. Ser. A 72 (1969), 31-42. | Zbl 0167.32201

[005] [6] A. Y. Khintchine, Metrische Kettenbruchprobleme, Compositio Math. 1 (1935), 361-382.

[006] [7] A. Knopfmacher and J. Knopfmacher, Series expansions in p-adic and other non-archimedean fields, J. Number Theory 32 (1989), 297-306. | Zbl 0683.10030

[007] [8] A. Knopfmacher and J. Knopfmacher, Infinite series expansions for p-adic numbers, J. Number Theory 41 (1992), 131-145. | Zbl 0756.11021

[008] [9] A. Knopfmacher and J. Knopfmacher, Metric properties of algorithms inducing Lüroth series expansions of Laurent series, Astérisque 209 (1992), 237-246. | Zbl 0788.11031

[009] [10] J. Knopfmacher, Ergodic properties of some inverse polynomial series expansions of Laurent series, Acta Math. Hungar. 60 (1992), 241-246. | Zbl 0774.11073

[010] [11] K. Knopp, Theory and Application of Infinite Series, Dover, 1990.

[011] [12] N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd ed., Springer, 1984. | Zbl 0364.12015

[012] [13] Y. Laohakosol, A characterization of p-adic Ruban continued fractions, J. Austral. Math. Soc. A 39 (1985), 300-305. | Zbl 0582.10021

[013] [14] K. Mahler, Zur Approximation p-adischer Irrationalzahlen, Nieuw Arch. Wisk. 18 (1934), 22-34. | Zbl 60.0163.02

[014] [15] R. Paysant-Le Roux and E. Dubois, Étude métrique de l'algorithme de Jacobi-Perron dans un corps de séries formelles, C. R. Acad. Sci. Paris A 275 (1972), 683-686. | Zbl 0254.10046

[015] [16] O. Perron, Irrationalzahlen, Chelsea, 1951.

[016] [17] A. A. Ruban, Some metric properties of p-adic numbers, Siberian Math. J. 11 (1970), 176-180. | Zbl 0213.32701

[017] [18] T. Salát, Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen, Czechoslovak Math. J. 18 (1968), 489-522. | Zbl 0162.34703

[018] [19] W. H. Schikhof, Ultrametric Calculus, Cambridge University Press, 1984.

[019] [20] V. G. Sprindžuk, Mahler's Problem in Metric Number Theory, Amer. Math. Soc., 1969.