Explicit global function fields over the binary field with many rational places
Harald Niederreiter ; Chaoping Xing
Acta Arithmetica, Tome 76 (1996), p. 383-396 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206884
@article{bwmeta1.element.bwnjournal-article-aav75i4p383bwm,
     author = {Harald Niederreiter and Chaoping Xing},
     title = {Explicit global function fields over the binary field with many rational places},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {383-396},
     zbl = {0877.11065},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav75i4p383bwm}
}
Harald Niederreiter; Chaoping Xing. Explicit global function fields over the binary field with many rational places. Acta Arithmetica, Tome 76 (1996) pp. 383-396. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav75i4p383bwm/

[000] [1] L. Carlitz, A class of polynomials, Trans. Amer. Math. Soc. 43 (1938), 167-182. | Zbl 0018.19806

[001] [2] A. Garcia and H. Stichtenoth, A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound, Invent. Math. 121 (1995), 211-222. | Zbl 0822.11078

[002] [3] A. Garcia and H. Stichtenoth, On the asymptotic behaviour of some towers of function fields over finite fields, preprint, 1995. | Zbl 0893.11047

[003] [4] D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77-91. | Zbl 0292.12018

[004] [5] Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 721-724. | Zbl 0509.14019

[005] [6] H. Niederreiter and C. P. Xing, Low-discrepancy sequences obtained from algebraic function fields over finite fields, Acta Arith. 72 (1995), 281-298. | Zbl 0833.11035

[006] [7] H. Niederreiter and C. P. Xing, Low-discrepancy sequences and global function fields with many rational places, Finite Fields Appl., to appear.

[007] [8] H. Niederreiter and C. P. Xing, Quasirandom points and global function fields, in: Finite Fields and Applications, S. D. Cohen and H. Niederreiter (eds.), Cambridge University Press, Cambridge, to appear. | Zbl 0932.11050

[008] [9] M. Perret, Tours ramifiées infinies de corps de classes, J. Number Theory 38 (1991), 300-322. | Zbl 0741.11044

[009] [10] R. Schoof, Algebraic curves over 𝔽₂ with many rational points, J. Number Theory 41 (1992), 6-14. | Zbl 0762.11026

[010] [11] J.-P. Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 397-402. | Zbl 0538.14015

[011] [12] J.-P. Serre, Nombres de points des courbes algébriques sur q, Sém. Théorie des Nombres 1982-1983, Exp. 22, Univ. de Bordeaux I, Talence, 1983.

[012] [13] J.-P. Serre, Résumé des cours de 1983-1984, Annuaire du Collège de France (1984), 79-83.

[013] [14] J.-P. Serre, Rational Points on Curves over Finite Fields, lecture notes, Harvard University, 1985.

[014] [15] J.-P. Serre, personal communication, August 1995.

[015] [16] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993.

[016] [17] M. A. Tsfasman and S. G. Vlădut, Algebraic-Geometric Codes, Kluwer, Dordrecht, 1991. | Zbl 0727.94007

[017] [18] G. van der Geer and M. van der Vlugt, Curves over finite fields of characteristic 2 with many rational points, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 593-597. | Zbl 0787.14033

[018] [19] E. Weiss, Algebraic Number Theory, McGraw-Hill, New York, 1963. | Zbl 0115.03601

[019] [20] C. P. Xing, Multiple Kummer extension and the number of prime divisors of degree one in function fields, J. Pure Applied Algebra 84 (1993), 85-93. | Zbl 0776.11068

[020] [21] C. P. Xing and H. Niederreiter, A construction of low-discrepancy sequences using global function fields, Acta Arith. 73 (1995), 87-102. | Zbl 0848.11038