@article{bwmeta1.element.bwnjournal-article-aav75i4p383bwm, author = {Harald Niederreiter and Chaoping Xing}, title = {Explicit global function fields over the binary field with many rational places}, journal = {Acta Arithmetica}, volume = {76}, year = {1996}, pages = {383-396}, zbl = {0877.11065}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav75i4p383bwm} }
Harald Niederreiter; Chaoping Xing. Explicit global function fields over the binary field with many rational places. Acta Arithmetica, Tome 76 (1996) pp. 383-396. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav75i4p383bwm/
[000] [1] L. Carlitz, A class of polynomials, Trans. Amer. Math. Soc. 43 (1938), 167-182. | Zbl 0018.19806
[001] [2] A. Garcia and H. Stichtenoth, A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound, Invent. Math. 121 (1995), 211-222. | Zbl 0822.11078
[002] [3] A. Garcia and H. Stichtenoth, On the asymptotic behaviour of some towers of function fields over finite fields, preprint, 1995. | Zbl 0893.11047
[003] [4] D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77-91. | Zbl 0292.12018
[004] [5] Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 721-724. | Zbl 0509.14019
[005] [6] H. Niederreiter and C. P. Xing, Low-discrepancy sequences obtained from algebraic function fields over finite fields, Acta Arith. 72 (1995), 281-298. | Zbl 0833.11035
[006] [7] H. Niederreiter and C. P. Xing, Low-discrepancy sequences and global function fields with many rational places, Finite Fields Appl., to appear.
[007] [8] H. Niederreiter and C. P. Xing, Quasirandom points and global function fields, in: Finite Fields and Applications, S. D. Cohen and H. Niederreiter (eds.), Cambridge University Press, Cambridge, to appear. | Zbl 0932.11050
[008] [9] M. Perret, Tours ramifiées infinies de corps de classes, J. Number Theory 38 (1991), 300-322. | Zbl 0741.11044
[009] [10] R. Schoof, Algebraic curves over 𝔽₂ with many rational points, J. Number Theory 41 (1992), 6-14. | Zbl 0762.11026
[010] [11] J.-P. Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 397-402. | Zbl 0538.14015
[011] [12] J.-P. Serre, Nombres de points des courbes algébriques sur , Sém. Théorie des Nombres 1982-1983, Exp. 22, Univ. de Bordeaux I, Talence, 1983.
[012] [13] J.-P. Serre, Résumé des cours de 1983-1984, Annuaire du Collège de France (1984), 79-83.
[013] [14] J.-P. Serre, Rational Points on Curves over Finite Fields, lecture notes, Harvard University, 1985.
[014] [15] J.-P. Serre, personal communication, August 1995.
[015] [16] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993.
[016] [17] M. A. Tsfasman and S. G. Vlădut, Algebraic-Geometric Codes, Kluwer, Dordrecht, 1991. | Zbl 0727.94007
[017] [18] G. van der Geer and M. van der Vlugt, Curves over finite fields of characteristic 2 with many rational points, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 593-597. | Zbl 0787.14033
[018] [19] E. Weiss, Algebraic Number Theory, McGraw-Hill, New York, 1963. | Zbl 0115.03601
[019] [20] C. P. Xing, Multiple Kummer extension and the number of prime divisors of degree one in function fields, J. Pure Applied Algebra 84 (1993), 85-93. | Zbl 0776.11068
[020] [21] C. P. Xing and H. Niederreiter, A construction of low-discrepancy sequences using global function fields, Acta Arith. 73 (1995), 87-102. | Zbl 0848.11038