A proof of quintic reciprocity using the arithmetic of y² = x⁵ + 1/4
David Grant
Acta Arithmetica, Tome 76 (1996), p. 321-337 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206880
@article{bwmeta1.element.bwnjournal-article-aav75i4p321bwm,
     author = {David Grant},
     title = {A proof of quintic reciprocity using the arithmetic of y2 = x5 + 1/4},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {321-337},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav75i4p321bwm}
}
David Grant. A proof of quintic reciprocity using the arithmetic of y² = x⁵ + 1/4. Acta Arithmetica, Tome 76 (1996) pp. 321-337. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav75i4p321bwm/

[000] [AT] E. Artin and J. Tate, Class Field Theory, Benjamin, Reading, 1967.

[001] [BaBo] E. Bavencoffe et J. Boxall, Valeurs des fonctions thêta associées à la courbe y² = x⁵-1, Séminaire de Théorie des Nombres de Caen 1991/1992.

[002] [BoBa] J. Boxall et E. Bavencoffe, Quelques propriétés arithmétiques des points de 3-division de la jacobienne de y² = x⁵-1, Séminaire de Théorie des Nombres, Bordeaux 4 (1992), 113-128. | Zbl 0766.14019

[003] [C] J. W. S. Cassels, On Kummer sums, Proc. London Math. Soc. (3) 21 (1970), 19-27. | Zbl 0197.32004

[004] [F] R. Fueter, Reziprozitätsgesetze in quadratisch-imaginären Körpern, Nachr. Ges. Wiss. Göttingen 1927, 1-11, 427-445. | Zbl 54.0192.02

[005] [Gra1] D. Grant, A generalization of a formula of Eisenstein, Proc. London Math. Soc. (3) 62 (1991), 121-132. | Zbl 0738.14019

[006] [Gra2] D. Grant, Units from 3- and 4-torsion on Jacobians of curves of genus 2, Compositio Math. 95 (1994), 311-320. | Zbl 0828.11033

[007] [Gra3] D. Grant, Units from 5-torsion on the Jacobian of y² = x⁵ + 1/4 and the conjectures of Stark and Rubin, in preparation.

[008] [Gra4] D. Grant, Formal groups in genus two, J. Reine Angew. Math. 411 (1990), 96-121.

[009] [Gra5] D. Grant, Coates-Wiles towers in dimension two, Math. Ann. 282 (1988), 645-666. | Zbl 0726.11039

[010] [Gre] R. Greenberg, On the Jacobian variety of some algebraic curves, Compositio Math. 42 (1981), 345-359. | Zbl 0475.14026

[011] [H] D. Hilbert, Théorie des corps de nombres algébriques, Jacques Gabay, Sceaux, 1991. Translation of: Die Theorie der algebraischen Zahlkörper , Jahresber. Deutsch. Math.-Verein 4 (1897), 175-546.

[012] [IrR] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Grad. Texts in Math. 84, Springer, 1982.

[013] [Iw] K. Iwasawa, A note on Jacobi sums, Sympos. Math. 15 (1975), 447-459.

[014] [K1] T. Kubota, Reciprocities in Gauss' and Eisenstein's number fields, J. Reine Angew. Math. 208 (1961), 35-50. | Zbl 0202.33302

[015] [K2] T. Kubota, An application of the power residue theory to some abelian functions, Nagoya Math. J. 27 (1966), 51-54. | Zbl 0168.29601

[016] [L] S. Lang, Complex Multiplication, Springer, 1983. | Zbl 0536.14029

[017] [M] J. Milne, Abelian Varieties, in: G. Cornell and J. Silverman (eds.), Arithmetic Geometry, Springer, New York, 1986, 103-150. | Zbl 0604.14028

[018] [ST] G. Shimura and Y. Taniyama, Complex Multiplication of Abelian Varieties and its Applications to Number Theory, The Mathematical Society of Japan, 1961. | Zbl 0112.03502

[019] [W1] A. Weil, La cyclotomie jadis et naguère, Enseign. Math. 20 (1974), 247-263. | Zbl 0352.12006

[020] [W2] A. Weil, Review of 'Mathematische Werke, by Gotthold Eisenstein,'' Bull. Amer. Math. Soc. 82 (1976), 658-663.

[021] [W3] A. Weil, Introduction to: E. E. Kummer, Collected Papers, Vol. 1, Springer, New York, 1975, 1-11.

[022] [W4] A. Weil, Jacobi sums as Grössencharaktere, Trans. Amer. Math. Soc. 73 (1952), 487-495. | Zbl 0048.27001