@article{bwmeta1.element.bwnjournal-article-aav75i4p297bwm, author = {Henry Cohn}, title = {Symmetry and specializability in continued fractions}, journal = {Acta Arithmetica}, volume = {76}, year = {1996}, pages = {297-320}, zbl = {0853.11005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav75i4p297bwm} }
Henry Cohn. Symmetry and specializability in continued fractions. Acta Arithmetica, Tome 76 (1996) pp. 297-320. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav75i4p297bwm/
[000] [1] A. Blanchard et M. Mendès France, Symétrie et transcendance, Bull. Sci. Math. 106 (1982), 325-335
[001] [2] R. Graham, D. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, 1989.
[002] [3] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, Oxford, 1979. | Zbl 0423.10001
[003] [4] M. Kmošek, Continued fraction expansion of some irrational numbers, Master's Thesis, Uniwersytet Warszawski, Warszawa, 1979 (in Polish).
[004] [5] G. Köhler, Some more predictable continued fractions, Monatsh. Math. 89 (1980), 95-100. | Zbl 0419.10010
[005] [6] M. Mendès France, Sur les fractions continues limitées, Acta Arith. 23 (1973), 207-215. | Zbl 0228.10007
[006] [7] M. Mendès France and A. J. van der Poorten, Some explicit continued fraction expansions, Mathematika 38 (1991), 1-9.
[007] [8] A. Ostrowski, Über einige Verallgemeinerungen des Eulerschen Produktes , Verh. Naturf. Ges. Basel 2 (1929), 153-214.
[008] [9] A. J. van der Poorten and J. Shallit, Folded continued fractions, J. Number Theory 40 (1992), 237-250. | Zbl 0753.11005
[009] [10] A. J. van der Poorten and J. Shallit, A specialised continued fraction, Canad. J. Math. 45 (1993), 1067-1079. | Zbl 0797.11007
[010] [11] J. Shallit, Simple continued fractions for some irrational numbers, J. Number Theory 11 (1979), 209-217. | Zbl 0404.10003
[011] [12] J. Shallit, Simple continued fractions for some irrational numbers II, J. Number Theory 14 (1982), 228-231. | Zbl 0481.10005
[012] [13] J. Tamura, Explicit formulae for certain series representing quadratic irrationals, in: Number Theory and Combinatorics, J. Akiyama et al. (eds.), World Scientific, Singapore, 1985, 369-381.
[013] [14] J. Tamura, Symmetric continued fractions related to certain series, J. Number Theory 38 (1991), 251-264. | Zbl 0734.11005