Kummer type congruences and Stickelberger subideals
Takashi Agoh ; Ladislav Skula
Acta Arithmetica, Tome 76 (1996), p. 235-250 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206874
@article{bwmeta1.element.bwnjournal-article-aav75i3p235bwm,
     author = {Takashi Agoh and Ladislav Skula},
     title = {Kummer type congruences and Stickelberger subideals},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {235-250},
     zbl = {0841.11012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav75i3p235bwm}
}
Takashi Agoh; Ladislav Skula. Kummer type congruences and Stickelberger subideals. Acta Arithmetica, Tome 76 (1996) pp. 235-250. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav75i3p235bwm/

[000] [1] T. Agoh, On the criteria of Wieferich and Mirimanoff, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), 49-52. | Zbl 0585.10009

[001] [2] T. Agoh, On the Kummer-Mirimanoff congruences, Acta Arith. 55 (1990), 141-156. | Zbl 0648.10013

[002] [3] T. Agoh, Some variations and consequences of the Kummer-Mirimanoff congruences, Acta Arith. 62 (1992), 73-96. | Zbl 0738.11031

[003] [4] G. Benneton, Sur le dernier théorème de Fermat, Ann. Sci. Univ. Besançon Math. 3 (1974), 15pp.

[004] [5] P. J. Davis, Circulant Matrices, Wiley, New York, 1979. | Zbl 0418.15017

[005] [6] H. G. Folz and H. G. Zimmer, What is the rank of the Demjanenko matrix?, J. Symbolic Comput. 4 (1987), 53-67. | Zbl 0624.14001

[006] [7] R. Fueter, Kummers Kriterium zum letzten Theorem von Fermat, Math. Ann. 85 (1922), 11-20. | Zbl 48.0130.05

[007] [8] F. Hazama, Demjanenko matrix, class number, and Hodge group, J. Number Theory 34 (1990), 174-177. | Zbl 0697.12003

[008] [9] F. Hazama, Hodge cycles on the Jacobian variety of the Catalan curve, preprint, 1994.

[009] [10] K. Iwasawa, A class number formula for cyclotomic fields, Ann. of Math. 76 (1962), 171-179. | Zbl 0125.02003

[010] [11] E. E. Kummer, Einige Sätze über die aus den Wurzeln der Gleichung αλ=1 gebildeten complexen Zahlen, für den Fall, daß die Klassenanzahl durch λ theilbar ist, nebst Anwendung derselben auf einen weiteren Beweis des letzten Fermat’schen Lehrsatzes, Abhandl. Königl. Akad. Wiss. Berlin 1857, 41-74; Collected Papers, Vol. I, 639-692.

[011] [12] M. Lerch, Zur Theorie des Fermatschen Quotienten (ap-1-1)/p=q(a), Math. Ann. 60 (1905), 471-490. | Zbl 36.0266.03

[012] [13] P. Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, New York, 1979.

[013] [14] J. W. Sands and W. Schwarz, A Demjanenko matrix for abelian fields of prime power conductor, J. Number Theory 52 (1995), 85-97. | Zbl 0829.11054

[014] [15] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980), 181-234. | Zbl 0465.12001

[015] [16] L. Skula, A remark on Mirimanoff polynomials, Comment. Math. Univ. St. Paul. (Tokyo) 31 (1982), 89-97. | Zbl 0496.10006

[016] [17] L. Skula, Some bases of the Stickelberger ideal, Math. Slovaca 43 (1993), 541-571. | Zbl 0798.11044

[017] [18] L. Skula, On a special ideal contained in the Stickelberger ideal, J. Number Theory, to appear. | Zbl 0861.11063