On the pure Jacobi sums
Shigeki Akiyama
Acta Arithmetica, Tome 76 (1996), p. 97-104 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206870
@article{bwmeta1.element.bwnjournal-article-aav75i2p97bwm,
     author = {Shigeki Akiyama},
     title = {On the pure Jacobi sums},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {97-104},
     zbl = {0849.11094},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav75i2p97bwm}
}
Shigeki Akiyama. On the pure Jacobi sums. Acta Arithmetica, Tome 76 (1996) pp. 97-104. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav75i2p97bwm/

[000] [1] L. D. Baumert, W. H. Mills and R. L. Ward, Uniform cyclotomy, J. Number Theory 14 (1982), 67-82.

[001] [2] B. C. Berndt and R. J. Evans, Sums of Gauss, Jacobi, Jacobsthal, J. Number Theory 11 (1979), 349-398. | Zbl 0412.10027

[002] [3] B. C. Berndt and R. J. Evans Sums of Gauss, Eisenstein, Jacobi, Jacobsthal, and Brewer, Illinois J. Math. 23 (1979), 374-437.

[003] [4] B. C. Berndt and R. J. Evans Sums of Gauss, The determination of Gauss sums, Bull. Amer. Math. Soc. (N.S.) 5 (1981), 107-129. | Zbl 0471.10028

[004] [5] B. C. Berndt and R. J. Evans Sums of Gauss, Corrigendum to 'The determination of Gauss sums', Bull. Amer. Math. Soc. (N.S.) 7 (1982), 441.

[005] [6] S. Chowla, On Gaussian sums, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 1127-1128.

[006] [7] R. J. Evans, Generalization of a theorem of Chowla on Gaussian sums, Houston J. Math. 3 (1977), 343-349. | Zbl 0372.10028

[007] [8] R. J. Evans, Resolution of sign ambiguities in Jacobi and Jacobsthal sums, Pacific J. Math. 81 (1979), 71-80. | Zbl 0419.10037

[008] [9] R. J. Evans, Pure Gauss sums over finite fields, Mathematika 28 (1981), 239-248. | Zbl 0475.10032

[009] [10] T. Ito, H. Ishibashi, A. Munemasa and M. Yamada, The Terwilliger algebra of cyclotomic schemes and rationality of Jacobi Sums, in: Abstracts of the Conference on Algebraic Combinatorics, Fukuoka, 1993, 43-44.

[010] [11] D. S. Kubert and S. Lang, Independence of modular units on Tate curves, Math. Ann. 240 (1979), 191-201. | Zbl 0382.14008

[011] [12] S. Lang, Cyclotomic Fields, I and II, Graduate Texts in Math. 121, Springer, 1990.

[012] [13] L. Mordell, On a cyclotomic resolvent, Arch. Math. (Basel) 13 (1962), 486-487. | Zbl 0112.03401