Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations
N. Tzanakis
Acta Arithmetica, Tome 76 (1996), p. 165-190 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206868
@article{bwmeta1.element.bwnjournal-article-aav75i2p165bwm,
     author = {N. Tzanakis},
     title = {Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {165-190},
     zbl = {0858.11016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav75i2p165bwm}
}
N. Tzanakis. Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations. Acta Arithmetica, Tome 76 (1996) pp. 165-190. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav75i2p165bwm/

[000] [B] R. T. Bumby, The diophantine equation 3x⁴-2y²=1, Math. Scand. 21 (1967), 144-148. | Zbl 0169.37402

[001] [Cn] I. Connell, Addendum to a paper of Harada and Lang, J. Algebra 145 (1992), 463-467. | Zbl 0759.11021

[002] [Cx] D. A. Cox, The arithmetic-geometric mean of Gauss, Enseign. Math. 30 (1984), 275-330. | Zbl 0583.33002

[003] [Da] S. David, Minorations de formes linéaires de logarithmes elliptiques, Mém. 62 Soc. Math. France (Suppl. to Bull. Soc. Math. France 123 (3) (1995)), to appear.

[004] [Di] L. E. Dickson, History of the Theory of Numbers, Vol. II, Chelsea, New York, 1971.

[005] [GPZ] J. Gebel, A. Pethő and H. G. Zimmer, Computing integral points on elliptic curves, Acta Arith. 68 (1994), 171-192. | Zbl 0816.11019

[006] [G] R. K. Guy, Reviews in Number Theory 1973-83, Vol. 2A, Amer. Math. Soc., Providence, R.I., 1984. | Zbl 0598.10001

[007] [HK] N. Hirata-Kohno, Formes linéaires de logarithmes de points algébriques sur les groupes algébriques, Invent. Math. 104 (1991), 401-433. | Zbl 0704.11016

[008] [LLL] A. K. Lenstra, H. W. Lenstra and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515-534. | Zbl 0488.12001

[009] [LV] W. J. LeVeque, Reviews in Number Theory 1940-72, Vol. 2, Amer. Math. Soc., Providence, R.I., 1974.

[010] [L1] W. Ljunggren, Einige Sätze über unbestimmte Gleichungen von der Form Ax⁴ +Bx² +C = Dy², Vid.-Akad. Skrifter I (9) (1942), 53 pp.

[011] [L2] W. Ljunggren, Zur Theorie der Gleichung X² +1 = DY⁴, Avh. Norske Vid. Akad. Oslo I (5) (1942), 27 pp.

[012] [L3] W. Ljunggren, Proof of a theorem of de Jonquières, Norsk Mat. Tidsskrift 26 (1944), 3-8 (in Norwegian).

[013] [S1] J. H. Silverman, Computing heights on elliptic curves, Math. Comp. 51 (1988), 339-358. | Zbl 0656.14016

[014] [S2] J. H. Silverman, The difference between the Weil height and the canonical height on elliptic curves, Math. Comp. 55 (1990), 723-743. | Zbl 0729.14026

[015] [StT] R. Steiner and N. Tzanakis, Simplifying the solution of Ljunggren's equation X² +1 = 2Y⁴, J. Number Theory 37 (1991), 123-132. | Zbl 0716.11016

[016] [Str] R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Math. 97 (1995), 295-307. | Zbl 0837.11012

[017] [ST] R. J. Stroeker and N. Tzanakis, Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms, Acta Arith. 67 (1994), 177-196. | Zbl 0805.11026

[018] [SW] R. J. Stroeker and B. M. M. de Weger, On a quartic Diophantine equation, Proc. Edinburgh Math. Soc., to appear.

[019] [T1] J. Top, Fermat's 'primitive solutions' and some arithmetic of elliptic curves, Indag. Math. 4 (1993), 211-222. | Zbl 0787.11022

[020] [T2] J. Top, Examples of elliptic quartics with many integral points, private communication, September 1994.

[021] [dW] B. M. M. de Weger, Algorithms for diophantine equations, CWI Tract 65, Centre for Mathematics and Computer Science, Amsterdam, 1989.

[022] [Z] D. Zagier, Large integral points on elliptic curves, Math. Comp. 48 (1987), 425-436 | Zbl 0611.10008