@article{bwmeta1.element.bwnjournal-article-aav75i1p71bwm, author = {Keqin Feng}, title = {Non-congruent numbers, odd graphs and the Birch-Swinnerton-Dyer conjecture}, journal = {Acta Arithmetica}, volume = {76}, year = {1996}, pages = {71-83}, zbl = {0838.11039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav75i1p71bwm} }
Keqin Feng. Non-congruent numbers, odd graphs and the Birch-Swinnerton-Dyer conjecture. Acta Arithmetica, Tome 76 (1996) pp. 71-83. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav75i1p71bwm/
[000] [1] R. Alter, T. B. Curtz and K. K. Kubota, Remarks and results on congruent numbers, in: Proc. 3rd South Eastern Conf. Combin., Graph Theory and Comput., 1972, Florida Atlantic Univ., Boca Raton, Fla., 1972, 27-35. | Zbl 0259.10010
[001] [2] J. E. Cremona and R. W. Odoni, Some density results for negative Pell equations; an application of graph theory, J. London Math. Soc. 39 (1989), 16-28. | Zbl 0678.10015
[002] [3] G. P. Gogišvili, The number of representations of numbers by positive quaternary diagonal quadratic forms, Sakharth SSR Mecn. Math. Inst. Šrom. 40 (1971), 59-105 (MR 49#2536 (=E28-203)) (in Russian).
[003] [4] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer, 1984. | Zbl 0553.10019
[004] [5] J. Lagrange, Nombres congruents et courbes elliptiques, Sém. Delange-Pisot-Poitou, 16e année, 1974/75, no. 16.
[005] [6] L. Rédei, Arithmetischer Beweis des Satzes über die Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper, J. Reine Angew. Math. 171 (1934), 55-60. | Zbl 60.0125.02
[006] [7] L. Rédei und H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math. 170 (1933), 69-74. | Zbl 59.0192.01
[007] [8] K. Rubin, Tate-Shafarevich group and L-functions of elliptic curves with complex multiplication, Invent. Math. 89 (1987), 527-560. | Zbl 0628.14018
[008] [9] K. Rubin, The main conjecture for imaginary quadratic fields, Invent. Math. 103 (1991), 25-68. | Zbl 0737.11030
[009] [10] P. Serf, Congruent numbers and elliptic curves, in: Computational Number Theory, A. Pethő, M. Pohst, H. C. Williams and H. G. Zimmer (eds.), de Gruyter, 1991, 227-238. | Zbl 0736.11017
[010] [11] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986. | Zbl 0585.14026
[011] [12] J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math. 72 (1983), 323-334. | Zbl 0515.10013