@article{bwmeta1.element.bwnjournal-article-aav74i4p329bwm, author = {Walter Carlip and Eliot Jacobson}, title = {Unbounded stability of two-term recurrence sequences modulo $2^k$ }, journal = {Acta Arithmetica}, volume = {76}, year = {1996}, pages = {329-346}, zbl = {0838.11009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav74i4p329bwm} }
Walter Carlip; Eliot Jacobson. Unbounded stability of two-term recurrence sequences modulo $2^k$ . Acta Arithmetica, Tome 76 (1996) pp. 329-346. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav74i4p329bwm/
[000] [1] W. Carlip and E. Jacobson, Stability of two-term recurrence sequences modulo , Fibonacci Quart., to appear. | Zbl 0838.11009
[001] [2] R. D. Carmichael, On the numerical factors of the arithmetic forms αⁿ ± βⁿ, Ann. of Math. (2) 15 (1913), 30-70.
[002] [3] E. T. Jacobson, Distribution of the Fibonacci numbers mod , Fibonacci Quart. 30 (1992), 211-215. | Zbl 0760.11007
[003] [4] W. Narkiewicz, Uniform Distribution of Sequences of Integers in Residue Classes, Lecture Notes in Math. 1087, Springer, New York, 1984. | Zbl 0541.10001
[004] [5] J. Pihko, A note on a theorem of Schinzel, Fibonacci Quart. 29 (1991), 333-338.
[005] [6] A. Schinzel, Special Lucas sequences, including the Fibonacci sequence, modulo a prime, in: A Tribute to Paul Erdős, A. Baker, B. Bollobás, and A. Hajnal (eds.), Cambridge University Press, 1990, 349-357.
[006] [7] L. Somer, Distribution of residues of certain second-order linear recurrences modulo p, in: Applications of Fibonacci Numbers, A. N. Philippou, A. F. Horadam, and G. E. Bergum (eds.), Kluwer, 1988, 311-324.
[007] [8] L. Somer, Distribution of residues of certain second-order linear recurrences modulo p-II, Fibonacci Quart. 29 (1991), 72-78. | Zbl 0728.11010