@article{bwmeta1.element.bwnjournal-article-aav74i4p293bwm, author = {Stanislav Jakubec}, title = {Congruence of Ankeny-Artin-Chowla type modulo p$^2$ for cyclic fields of prime degree l}, journal = {Acta Arithmetica}, volume = {76}, year = {1996}, pages = {293-310}, zbl = {0853.11086}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav74i4p293bwm} }
Stanislav Jakubec. Congruence of Ankeny-Artin-Chowla type modulo p² for cyclic fields of prime degree l. Acta Arithmetica, Tome 76 (1996) pp. 293-310. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav74i4p293bwm/
[000] [1] K. Q. Feng, The Ankeny-Artin-Chowla formula for cubic cyclic number fields, J. China Univ. Sci. Tech. 12 (1982), 20-27.
[001] [2] S. Jakubec, The congruence for Gauss period, J. Number Theory 48 (1994), 36-45. | Zbl 0807.11049
[002] [3] S. Jakubec, On divisibility of class number of real Abelian fields of prime conductor, Abh. Math. Sem. Univ. Hamburg 63 (1993), 67-86. | Zbl 0788.11052
[003] [4] S. Jakubec, On Vandiver's conjecture, Abh. Math. Sem. Univ. Hamburg 64 (1994), 105-124. | Zbl 0828.11059
[004] [5] S. Jakubec, Congruence of Ankeny-Artin-Chowla type for cyclic fields of prime degree l, Math. Proc. Cambridge Philos. Soc., to appear. | Zbl 0853.11086
[005] [6] A. A. Kiselev and I. Sh. Slavutskiĭ, The transformation of Dirichlet's formulas and the arithmetical computation of the class number of quadratic fields, in: Proc. Fourth All-Union Math. Congr. (Leningrad 1961), Vol. II, Nauka, Leningrad, 1964, 105-112 (in Russian).
[006] [7] F. Marko, On the existence of p-units and Minkowski units in totally real cyclic fields, Abh. Math. Sem. Univ. Hamburg, to appear. | Zbl 0869.11087
[007] [8] R. Schertz, Über die analytische Klassenzahlformel für reelle abelsche Zahlkörper, J. Reine Angew. Math. 307/308 (1979), 424-430.
[008] [9] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980), 181-234. | Zbl 0465.12001
[009] [10] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, in: Séminaire de Théorie des Nombres, Paris 1979-80, M.-J. Bertin (ed.), Progr. Math. 12, Birkhäuser, 1981, 277-286.