Bounds for the solutions of Thue-Mahler equations and norm form equations
Yann Bugeaud ; Kálmán Győry
Acta Arithmetica, Tome 76 (1996), p. 273-292 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206853
@article{bwmeta1.element.bwnjournal-article-aav74i3p273bwm,
     author = {Yann Bugeaud and K\'alm\'an Gy\H ory},
     title = {Bounds for the solutions of Thue-Mahler equations and norm form equations},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {273-292},
     zbl = {0861.11024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav74i3p273bwm}
}
Yann Bugeaud; Kálmán Győry. Bounds for the solutions of Thue-Mahler equations and norm form equations. Acta Arithmetica, Tome 76 (1996) pp. 273-292. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav74i3p273bwm/

[000] [1] A. Baker, Transcendental Number Theory, 2nd ed., Cambridge University Press, 1979. | Zbl 0497.10023

[001] [2] E. Bombieri, Effective diophantine approximation on Gₘ, Ann. Scuola Norm. Sup. Pisa (IV) 20 (1993), 61-89. | Zbl 0774.11034

[002] [3] Y. Bugeaud and K. Győry, Bounds for the solutions of unit equations, Acta Arith. 74 (1996), 67-80. | Zbl 0861.11023

[003] [4] J. H. Evertse and K. Győry, Decomposable form equations, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge University Press, 1988, 175-202.

[004] [5] J. H. Evertse, K. Győry, C. L. Stewart and R. Tijdeman, S-unit equations and their applications, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge University Press, 1988, 110-174. | Zbl 0658.10023

[005] [6] N. I. Feldman, An effective refinement of the exponent in Liouville's theorem, Izv. Akad. Nauk SSSR 35 (1971), 973-990 (in Russian).

[006] [7] I. Gaál, Norm form equations with several dominating variables and explicit lower bounds for inhomogeneous linear forms with algebraic coefficients II, Studia Sci. Math. Hungar. 20 (1985), 333-344. | Zbl 0625.10012

[007] [8] K. Győry, Sur les polynômes à coefficients entiers et de discriminant donné II, Publ. Math. Debrecen 21 (1974), 125-144. | Zbl 0303.12001

[008] [9] K. Győry, Explicit upper bounds for the solutions of some diophantine equations, Ann. Acad. Sci. Fenn. Ser. A Math. 5 (1980), 3-12. | Zbl 0402.10018

[009] [10] K. Győry, Explicit lower bounds for linear forms with algebraic coefficients, Arch. Math. (Basel) 35 (1980), 438-446. | Zbl 0437.10014

[010] [11] K. Győry, Résultats effectifs sur la représentation des entiers par des formes décomposables, Queen's Papers in Pure and Appl. Math. 56, Queen's University, Kingston, 1980. | Zbl 0455.10011

[011] [12] K. Győry, On the representation of integers by decomposable forms in several variables, Publ. Math. Debrecen 28 (1981), 89-98. | Zbl 0477.10022

[012] [13] K. Győry, On S-integral solutions of norm form, discriminant form and index form equations, Studia Sci. Math. Hungar. 16 (1981), 149-161. | Zbl 0518.10019

[013] [14] K. Győry and Z. Z. Papp, Norm form equations and explicit lower bounds for linear forms with algebraic coefficients, in: Studies in Pure Mathematics to the Memory of Paul Turán, Akadémiai Kiadó, Budapest, and Birkhäuser, Basel, 1983, 245-257. | Zbl 0518.10020

[014] [15] L. Hajdu, A quantitative version of Dirichlet's S-unit theorem in algebraic number fields, Publ. Math. Debrecen 42 (1993), 239-246. | Zbl 0798.11051

[015] [16] S. V. Kotov, Effective bound for a linear form with algebraic coefficients in the archimedean and p-adic metrics, Inst. Math. Akad. Nauk BSSR, Preprint No. 24, Minsk, 1981 (in Russian).

[016] [17] S. V. Kotov and V. G. Sprindžuk, The Thue-Mahler equation in relative fields and approximation of algebraic numbers by algebraic numbers, Izv. Akad. Nauk SSSR 41 (1977), 723-751 (in Russian). | Zbl 0388.10015

[017] [18] H. W. Lenstra, Jr., Algorithms in algebraic number theory, Bull. Amer. Math. Soc. 26 (1992), 211-244. | Zbl 0759.11046

[018] [19] D. J. Lewis and K. Mahler, On the representation of integers by binary forms, Acta Arith. 6 (1961), 333-363. | Zbl 0102.03601

[019] [20] W. M. Schmidt, Integer points on curves of genus 1, Compositio Math. 81 (1992), 33-59. | Zbl 0747.11026

[020] [21] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, Cambridge, 1986. | Zbl 0606.10011

[021] [22] V. G. Sprindžuk, Classical Diophantine Equations, Lecture Notes in Math. 1559, Springer, 1993.

[022] [23] P. Voutier, An effective lower bound for the height of algebraic numbers, Acta Arith. 74 (1996), 81-95.

[023] [24] M. Waldschmidt, Minorations de combinaisons linéaires de logarithmes de nombres algébriques, Canad. J. Math. 45 (1993), 176-224.

[024] [25] K. Yu, Linear forms in p-adic logarithms III, Compositio Math. 91 (1994), 241-276. | Zbl 0819.11025