On a problem of Eisenstein
Peter Stevenhagen
Acta Arithmetica, Tome 76 (1996), p. 259-268 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206851
@article{bwmeta1.element.bwnjournal-article-aav74i3p259bwm,
     author = {Peter Stevenhagen},
     title = {On a problem of Eisenstein},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {259-268},
     zbl = {0851.11058},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav74i3p259bwm}
}
Peter Stevenhagen. On a problem of Eisenstein. Acta Arithmetica, Tome 76 (1996) pp. 259-268. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav74i3p259bwm/

[000] [1] W. Bosma and P. Stevenhagen, Density computations for real quadratic units, Math. Comp., to appear. | Zbl 0859.11064

[001] [2] H. Cohen and H. W. Lenstra, Jr., Heuristics on class groups of number fields, in: Number Theory, Noordwijkerhout 1983, H. Jager (ed.), Lecture Notes in Math. 1068, Springer, 1984, 33-62.

[002] [3] H. Cohn and J. C. Lagarias, On the existence of fields governing the 2-invariants of the class groups of ℚ(√dp) as p varies, Math. Comp. 41 (1983), 711-730. | Zbl 0523.12002

[003] [4] D. A. Cox, Primes of the Form x²+ny², Wiley-Interscience, 1989.

[004] [5] H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields, I, Bull. London Math. Soc. 1 (1969), 345-348. | Zbl 0211.38602

[005] [6] H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields, II, Proc. Roy. Soc. London A 322 (1971), 405-420. | Zbl 0212.08101

[006] [7] G. Eisenstein, Aufgaben, J. Reine Angew. Math. 27 (1844), 86-88; see also: Mathematische Werke, Band I, Chelsea, 111-113.

[007] [8] H. Hasse, Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischen Grundlage, Math. Z. 31 (1930), 565-582. | Zbl 56.0167.02

[008] [9] A. J. Stephens and H. C. Williams, Some computational results on a problem of Eisenstein, in: Théorie des Nombres - Number Theory, J. W. M. de Koninck and C. Levesque (eds.), de Gruyter, 1992, 869-886.

[009] [10] P. Stevenhagen, The number of real quadratic fields having units of negative norm, Experiment. Math. 2 (1993), 121-136. | Zbl 0792.11041

[010] [11] P. Stevenhagen, A density conjecture for the negative Pell equation, in: Computational Algebra and Number Theory, Sydney 1992, Kluwer, 1995, 187-200. | Zbl 0838.11066

[011] [12] P. Stevenhagen, Divisibility by 2-powers of certain quadratic class numbers, J. Number Theory 43 (1993), 1-19. | Zbl 0767.11054

[012] [13] K. S. Williams, On the class number of ℚ(√-p) modulo 16, for p ≡ 1 mod 8 a prime, Acta Arith. 39 (1981), 381-398. | Zbl 0393.12008