Sums of squares of integral linear forms
María Inés Icaza
Acta Arithmetica, Tome 76 (1996), p. 231-240 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206849
@article{bwmeta1.element.bwnjournal-article-aav74i3p231bwm,
     author = {Mar\'\i a In\'es Icaza},
     title = {Sums of squares of integral linear forms},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {231-240},
     zbl = {0848.11015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav74i3p231bwm}
}
María Inés Icaza. Sums of squares of integral linear forms. Acta Arithmetica, Tome 76 (1996) pp. 231-240. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav74i3p231bwm/

[000] [BI] R. Baeza and M. I. Icaza, Decomposition of positive definite integral quadratic forms as sums of positive definite quadratic forms, in: Proc. Sympos. Pure Math., Amer. Math. Soc. 58 (1995), 63-72. | Zbl 0820.11024

[001] [BLOP] R. Baeza, D. Leep, M. O'Ryan and J. P. Prieto, Sums of squares of linear forms, Math. Z. 193 (1986), 297-306. | Zbl 0598.10032

[002] [BEH]₁ J. W. Benham and J. S. Hsia, On spinor exceptional representations, Nagoya Math. J. 87 (1982), 247-260. | Zbl 0455.10013

[003] [BEH]₂ J. W. Benham and J. S. Hsia, Spinor equivalence of quadratic forms, J. Number Theory 17 (1983), 337-342. | Zbl 0532.10012

[004] [HKK] J. S. Hsia, Y. Kitaoka and M. Kneser, Representations of positive definite quadratic forms, J. Reine Angew. Math. 301 (1978), 132-141. | Zbl 0374.10013

[005] [H]₁ P. Humbert, Théorie de la réduction des formes quadratiques définies positives dans un corps algébrique fini, Comment. Math. Helv. 12 (1939/40), 263-306. | Zbl 66.0125.02

[006] [H]₂ P. Humbert, Réduction des formes quadratiques dans un corps algébrique fini, Comment. Math. Helv. 23 (1949), 50-63. | Zbl 0034.31102

[007] [I] M. I. Icaza, Effectiveness in representations of positive definite quadratic forms, Dissertation, The Ohio State University, 1992.

[008] [Ki] Y. Kitaoka, Siegel Modular Forms and Representation by Quadratic Forms, Tata Inst. Fund. Res. Stud. Math. Bombay, Springer, 1986. | Zbl 0596.10020

[009] [Ko] C. Ko, On the representation of a quadratic form as a sum of squares of linear forms, Quart. J. Math. Oxford 8 (1937), 81-98. | Zbl 63.0123.03

[010] [Mo]₁ L. J. Mordell, A new Waring's problem with squares of linear forms, Quart. J. Math. Oxford 1 (1930), 276-288. | Zbl 56.0883.06

[011] [Mo]₂ L. J. Mordell, On the representation of a binary quadratic form as a sum of squares of linear forms, Math. Z. 35 (1932), 1-15.

[012] [Mo]₃ L. J. Mordell, The representation of a definite quadratic form as a sum of two other, Ann. of Math. 38 (1937), 751-757. | Zbl 0017.38803

[013] [O'M]₁ O. T. O'Meara, Introduction to Quadratic Forms, Grundlehren Math. Wiss. 117, Springer, 1973.

[014] [O'M]₂ O. T. O'Meara, The integral representation of quadratic forms over local rings, Amer. J. Math. 80 (1958), 843-878.

[015] [R] C. Riehm, On the representation of quadratic forms over local fields, Amer. J. Math. 86 (1964), 25-62. | Zbl 0135.08702

[016] [VdW] B. L. van der Waerden, Die Reduktionstheorie der positiven quadratischen Formen, Acta Math. 96 (1956), 265-309. | Zbl 0072.03601