Partitions with numbers in their gaps
Douglas Bowman
Acta Arithmetica, Tome 76 (1996), p. 97-105 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206846
@article{bwmeta1.element.bwnjournal-article-aav74i2p97bwm,
     author = {Douglas Bowman},
     title = {Partitions with numbers in their gaps},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {97-105},
     zbl = {0861.11058},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav74i2p97bwm}
}
Douglas Bowman. Partitions with numbers in their gaps. Acta Arithmetica, Tome 76 (1996) pp. 97-105. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav74i2p97bwm/

[000] [1] K. Alladi and B. Gordon, Generalizations of Schur's partition theorem, Manuscr. Math. 79 (1993), 113-126. | Zbl 0799.11043

[001] [2] G. E. Andrews, q-series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra, CBMS Regional Conf. Ser. in Math. 66, Amer. Math. Soc., Providence, R.I., 1986.

[002] [3] G. E. Andrews, The Theory of Partitions, Encyclopedia Math. Appl., Vol. 2, Addison-Wesley, Reading, 1976. (Reissued: Cambridge University Press, London, 1985.)

[003] [4] D. Bowman, Modified convergence for q-continued fractions defined by functional relations, in: Proc. Rademacher Centenary Conference, to appear. | Zbl 0811.40001

[004] [5] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge Univ. Press, 1990. | Zbl 0695.33001

[005] [6] B. Gordon, Some continued fractions of the Rogers-Ramanujan type, Duke Math. J. 32 (1965), 741-748. | Zbl 0178.33404

[006] [7] M. Hirschhorn, Developments in the theory of partitions, Dissertation, University of New South Wales, 1979.

[007] [8] O. Perron, Die Lehre von den Kettenbrüchen, Vol. 2, Teubner, Stuttgart, 1957. | Zbl 0077.06602

[008] [9] I. Schur, Zur additiven Zahlentheorie, S.-B. Preuss. Akad. Wiss. Phys.-Math. Kl. 1926, 488-495. (Reprinted in I. Schur, Gessammelte Abhandlungen, Vol. 3, Springer, Berlin, 1973, 43-50.