Sets of integers and quasi-integers with pairwise common divisor
Rudolf Ahlswede ; Levon H. Khachatrian
Acta Arithmetica, Tome 76 (1996), p. 141-153 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206842
@article{bwmeta1.element.bwnjournal-article-aav74i2p141bwm,
     author = {Rudolf Ahlswede and Levon H. Khachatrian},
     title = {Sets of integers and quasi-integers with pairwise common divisor},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {141-153},
     zbl = {0870.11014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav74i2p141bwm}
}
Rudolf Ahlswede; Levon H. Khachatrian. Sets of integers and quasi-integers with pairwise common divisor. Acta Arithmetica, Tome 76 (1996) pp. 141-153. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav74i2p141bwm/

[000] [1] R. Ahlswede and L. H. Khachatrian, On extremal sets without coprimes, Acta Arith. 66 (1994), 89-99. | Zbl 0826.11043

[001] [2] R. Ahlswede and L. H. Khachatrian, Maximal sets of numbers not containing k+1 pairwise coprime integers, Acta Arith. 72 (1995), 77-100. | Zbl 0828.11011

[002] [3] N. G. de Bruijn, On the number of uncancelled elements in the sieve of Eratosthenes, Indag. Math. 12 (1950), 247-256. | Zbl 0037.03001

[003] [4] P. Erdős, Remarks in number theory, IV, Mat. Lapok 13 (1962), 228-255.

[004] [5] P. Erdős, Extremal problems in number theory, in: Theory of Numbers, Proc. Sympos. Pure Math. 8, Amer. Math. Soc., Providence, R.I., 1965, 181-189.

[005] [6] P. Erdős, Problems and results on combinatorial number theory, Chapt. 12 in: A Survey of Combinatorial Theory, J. N. Srivastava et al. (eds.), North-Holland, 1973.

[006] [7] P. Erdős, A survey of problems in combinatorial number theory, Ann. Discrete Math. 6 (1980), 89-115. | Zbl 0448.10002

[007] [8] P. Erdős and A. Sárközy, On sets of coprime integers in intervals, Hardy-Ramanujan J. 16 (1993), 1-20.

[008] [9] P. Erdős, A. Sárközy and E. Szemerédi, On some extremal properties of sequences of integers, Ann. Univ. Sci. Budapest. Eötvös 12 (1969), 131-135. | Zbl 0188.34504

[009] [10] P. Erdős, A. Sárközy and E. Szemerédi, On some extremal properties of sequences of intergers, II, Publ. Math. Debrecen 27 (1980), 117-125. | Zbl 0461.10047

[010] [11] R. Freud, Paul Erdős, 80-A personal account, Period. Math. Hungar. 26 (1993), 87-93. | Zbl 0787.01017

[011] [12] H. Halberstam and K. F. Roth, Sequences, Oxford University Press, 1966; Springer, 1983.

[012] [13] R. R. Hall and G. Tenenbaum, Divisors, Cambridge Tracts in Math. 90, 1988.

[013] [14] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-89. | Zbl 0122.05001

[014] [15] C. Szabó and G. Tóth, Maximal sequences not containing 4 pairwise coprime integers, Mat. Lapok 32 (1985), 253-257 (in Hungarian). | Zbl 0609.10044