An effective lower bound for the height of algebraic numbers
Paul Voutier
Acta Arithmetica, Tome 76 (1996), p. 81-95 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206839
@article{bwmeta1.element.bwnjournal-article-aav74i1p81bwm,
     author = {Paul Voutier},
     title = {An effective lower bound for the height of algebraic numbers},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {81-95},
     zbl = {0838.11065},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav74i1p81bwm}
}
Paul Voutier. An effective lower bound for the height of algebraic numbers. Acta Arithmetica, Tome 76 (1996) pp. 81-95. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav74i1p81bwm/

[000] [1] M. J. Bertin et M. Pathiaux-Delefosse, Conjecture de Lehmer et petits nombres de Salem, Queen's Papers in Pure and Appl. Math. 81, Kingston, 1989. | Zbl 0707.11073

[001] [2] P. E. Blanksby and H. L. Montgomery, Algebraic integers near the unit circle, Acta Arith. 18 (1971), 355-369. | Zbl 0221.12003

[002] [3] D. W. Boyd, Reciprocal polynomials having small measure, Math. Comp. 35 (1980), 1361-1377. | Zbl 0447.12002

[003] [4] D. W. Boyd, Reciprocal polynomials having small measure. II, Math. Comp. 53 (1989), 355-357. | Zbl 0684.12003

[004] [5] D. C. Cantor and E. G. Straus, On a conjecture of D. H. Lehmer, Acta Arith. 42 (1982), 97-100; corrigendum, Math. Comp., 327.

[005] [6] E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Math. Comp. 34 (1979), 391-401. | Zbl 0416.12001

[006] [7] A. Dubickas, On a conjecture of A. Schinzel and H. Zassenhaus, Math. Comp. 63 (1993), 15-20.

[007] [8] M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéaires en deux logarithmes et déterminant d'interpolation, J. Number Theory, to appear.

[008] [9] D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. (2) 34 (1933), 461-479. | Zbl 0007.19904

[009] [10] R. Louboutin, Sur la mesure de Mahler d'un nombre algébrique, C. R. Acad. Sci. Paris Sér. I 296 (1983), 707-708. | Zbl 0557.12001

[010] [11] E. M. Matveev, On the measure of algebraic integers, Mat. Zametki 49 (1991), 152-154 (in Russian). | Zbl 0732.11052

[011] [12] M. Meyer, Le problème de Lehmer: méthode de Dobrowolski et lemme de Siegel 'à la Bombieri-Vaaler', Publ. Math. Univ. P. et M. Curie (Paris VI), 90, Problèmes Diophantiens 1988/89, N°5, 15 p.

[012] [13] G. Poitou, Minorations de discriminants [d'après A.M. Odlyzko ], Séminaire Bourbaki 479, Lecture Notes in Math. 567, Springer, 1977, 136-153.

[013] [14] G. Robin, Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n, Acta Arith. 42 (1983), 367-389.

[014] [15] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. | Zbl 0122.05001

[015] [16] A. Schinzel and H. Zassenhaus, A refinement of two theorems of Kronecker, Michigan Math. J. 12 (1965), 81-85. | Zbl 0128.03402

[016] [17] C. J. Smyth, On the product of the conjugates outside the unit circle of an algebraic integer, Bull. London Math. Soc. 3 (1971), 169-175. | Zbl 0235.12003

[017] [18] C. L. Stewart, Algebraic integers whose conjugates lie near the unit circle, Bull. Soc. Math. France 106 (1978), 169-176 | Zbl 0396.12002