Bounds for the solutions of unit equations
Yann Bugeaud ; Kálmán Győry
Acta Arithmetica, Tome 76 (1996), p. 67-80 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206838
@article{bwmeta1.element.bwnjournal-article-aav74i1p67bwm,
     author = {Yann Bugeaud and K\'alm\'an Gy\H ory},
     title = {Bounds for the solutions of unit equations},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {67-80},
     zbl = {0861.11023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav74i1p67bwm}
}
Yann Bugeaud; Kálmán Győry. Bounds for the solutions of unit equations. Acta Arithmetica, Tome 76 (1996) pp. 67-80. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav74i1p67bwm/

[000] [1] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62. | Zbl 0788.11026

[001] [2] P. E. Blanksby and H. L. Montgomery, Algebraic integers near the unit circle, Acta Arith. 18 (1971), 355-369. | Zbl 0221.12003

[002] [3] E. Bombieri, Effective diophantine approximation on Gₘ, Ann. Scuola Norm. Sup. Pisa (IV) 20 (1993), 61-89. | Zbl 0774.11034

[003] [4] Z. I. Borevich and I. R. Shafarevich, Number Theory, 2nd ed., Academic Press, New York, 1967.

[004] [5] B. Brindza, On the generators of S-unit groups in algebraic number fields, Bull. Austral. Math. Soc. 43 (1991), 325-329. | Zbl 0711.11040

[005] [6] J. W. S. Cassels, An Introduction to the Geometry of Numbers, Grundlehren Math. Wiss. 99, Springer, Berlin, 1959.

[006] [7] E. Dobrowolski, On the maximal modulus of conjugates of an algebraic integer, Bull. Acad. Polon. Sci. 26 (1978), 291-292. | Zbl 0393.12003

[007] [8] E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391-401. | Zbl 0416.12001

[008] [9] A. Dubickas, On a conjecture of A. Schinzel and H. Zassenhaus, Acta Arith. 63 (1993), 15-20.

[009] [10] J. H. Evertse and K. Győry, Effective finiteness results for binary forms with given discriminant, Compositio Math. 79 (1991), 169-204. | Zbl 0746.11020

[010] [11] J. H. Evertse, K. Győry, C. L. Stewart and R. Tijdeman, S-unit equations and their applications, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge University Press, 1988, 110-174. | Zbl 0658.10023

[011] [12] E. Friedman, Analytic formulas for regulators of number fields, Invent. Math. 98 (1989), 599-622. | Zbl 0694.12006

[012] [13] K. Győry, On the number of solutions of linear equations in units of an algebraic number field, Comment. Math. Helv. 54 (1979), 583-600. | Zbl 0437.12004

[013] [14] K. Győry, On the solutions of linear diophantine equations in algebraic integers of bounded norm, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 22/23 (1980), 225-233. | Zbl 0442.10010

[014] [15] K. Győry, Résultats effectifs sur la représentation des entiers par des formes décomposables, Queen's Papers in Pure and Appl. Math. 56 (1980). | Zbl 0455.10011

[015] [16] K. Győry, Some recent applications of S-unit equations, in: Journées Arithmétiques de Genève 1991, D. F. Coray and Y.-F. S. Pétermann (eds.), Astérisque 209 (1992), 17-38.

[016] [17] K. Győry, Bounds for the solutions of decomposable form equations, to appear. | Zbl 0973.11042

[017] [18] L. Hajdu, A quantitative version of Dirichlet's S-unit theorem in algebraic number fields, Publ. Math. Debrecen 42 (1993), 239-246. | Zbl 0798.11051

[018] [19] S. V. Kotov und L. A. Trelina, S-ganze Punkte auf elliptischen Kurven, J. Reine Angew. Math. 306 (1979), 28-41.

[019] [20] S. Lang, Fundamentals of Diophantine Geometry, Springer, Berlin, 1983. | Zbl 0528.14013

[020] [21] H. W. Lenstra, Jr., Algorithms in algebraic number theory, Bull. Amer. Math. Soc. 26 (1992), 211-244. | Zbl 0759.11046

[021] [22] A. Pethő, Beiträge zur Theorie der S-Ordnungen, Acta Math. Acad. Sci. Hungar. 37 (1981), 51-57.

[022] [23] W. M. Schmidt, Integer points on curves of genus 1, Compositio Math. 81 (1992), 33-59. | Zbl 0747.11026

[023] [24] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, Cambridge, 1986. | Zbl 0606.10011

[024] [25] V. G. Sprindžuk, Classical Diophantine Equations, Lecture Notes in Math. 1559, Springer, 1993.

[025] [26] M. Waldschmidt, Minorations de combinaisons linéaires de logarithmes de nombres algébriques, Canad. J. Math. 45 (1993), 176-224.

[026] [27] K. Yu, Linear forms in p-adic logarithms III, Compositio Math. 91 (1994), 241-276 | Zbl 0819.11025