Quadratic polynomials producing consecutive, distinct primes and class groups of complex quadratic fields
R. A. Mollin
Acta Arithmetica, Tome 76 (1996), p. 17-30 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:206833
@article{bwmeta1.element.bwnjournal-article-aav74i1p17bwm,
     author = {R. A. Mollin},
     title = {Quadratic polynomials producing consecutive, distinct primes and class groups of complex quadratic fields},
     journal = {Acta Arithmetica},
     volume = {76},
     year = {1996},
     pages = {17-30},
     zbl = {0852.11060},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav74i1p17bwm}
}
R. A. Mollin. Quadratic polynomials producing consecutive, distinct primes and class groups of complex quadratic fields. Acta Arithmetica, Tome 76 (1996) pp. 17-30. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav74i1p17bwm/

[000] [1] S. Arno, The imaginary quadratic fields of class number 4, Acta. Arith. 60 (1992), 321-334. | Zbl 0760.11033

[001] [2] A. Baker, Linear forms in the logarithms of algebraic numbers, Mathematika 13 (1966), 204-216. | Zbl 0161.05201

[002] [3] A. Baker, Imaginary quadratic fields with class number two, Ann. of Math. 94 (1971), 139-152. | Zbl 0219.12008

[003] [4] H. Cohn, A Second Course in Number Theory, Wiley, 1962.

[004] [5] E. B. Escott, Réponses 1133 ``Formule d'Euler x²+x+41 et formules analogues'', L'intermédiaire des Math. 6 (1899), 10-11.

[005] [6] L. Euler, Extrait d'une lettre de M. Euler le père à M. Bernoulli concernant le mémoire imprimé parmi ceux de 1771, p. 381, Nouveaux mémoirs de l'Académie des Sciences de Berlin 1772, (1774) Histoire, 35-36; Opera Omnia, I₃, Commentationes Arithmeticae, II, Teubner, Lipsiae et Berolini, 1917, 335-337.

[006] [7] F. G. Frobenius, Über quadratische Formen die viele Primzahlen darstellen, Sitzungsber. Kgl. Preuss. Akad. Wiss. Berlin 1912, 966-980.

[007] [8] K. Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56 (1952), 227-253.

[008] [9] A. M. Legendre, Théorie des nombres, Libraire Scientifique A. Hermann, Paris, 1798, 69-76; 2nd ed., 1808, 61-67; 3rd ed., 1830, 72-80.

[009] [10] D. H. Lehmer, On the function x²+x+A, Sphinx 6 (1936), 212-214.

[010] [11] A. Lévy, Sur les nombres premiers dérivés de trinomes du second degré, Sphinx-Oedipe 9 (1914), 6-7.

[011] [12] S. Louboutin, R. A. Mollin and H. C. Williams, Class groups of exponent two in real quadratic fields, in: Advances in Number Theory, F. Q. Gouvéa and N. Yui (eds.) in consultation with A. Granville, R. Gupta, E. Kani, H. Kisilevsky, R. A. Mollin, and C. Stewart, Clarendon Press, Oxford, 1993, 499-513. | Zbl 0795.11057

[012] [13] R. A. Mollin, Quadratics, C.R.C. Press, Florida, 1995; to appear.

[013] [14] R. A. Mollin, Orders in quadratic fields I, Proc. Japan Acad. Ser. A 69 (1993), 45-48. | Zbl 0795.11056

[014] [15] R. A. Mollin, Orders in quadratic fields III, Proc. Japan Acad. Ser. A 70 (1994), 176-181. | Zbl 0809.11064

[015] [16] R. A. Mollin and H. C. Williams, Prime-producing quadratic polynomials and real quadratic fields of class number one, in: Number Theory, J. M. De Koninck and C. Levesque (eds.), de Gruyter, Berlin, 1989, 654-663. | Zbl 0695.12002

[016] [17] G. Rabinowitsch, Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern, in: Proc. Fifth Internat. Congress Math., Cambridge, I, 1913, 418-421. | Zbl 44.0244.01

[017] [18] G. Rabinowitsch, Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern, J. Reine Angew. Math. 142 (1913), 153-164. | Zbl 44.0243.03

[018] [19] P. Ribenboim, Euler's famous prime generating polynomial and class numbers of imaginary quadratic fields, Enseign. Math. 34 (1988), 23-42. | Zbl 0663.12003

[019] [20] R. Sasaki, On a lower bound for the class numbers of an imaginary quadratic field, Proc. Japan Acad. Ser. A 62 (1986), 37-39. | Zbl 0591.12008

[020] [21] W. Sierpiński, Elementary Theory of Numbers, Polish Scientific Publ., Warszawa, 1964. | Zbl 0122.04402

[021] [22] H. M. Stark, A complete determination of the complex quadratic fields of class-number one, Michigan Math. J. 14 (1967), 1-27.

[022] [23] H. M. Stark, A transcendence theorem for class number problems, Ann. of Math. 94 (1971), 153-173. | Zbl 0229.12010

[023] [24] B. Van der Pol and P. Speziali, The primes in k(ζ), Indag. Math. 13 (1951), 9-15. | Zbl 0045.01303

[024] [25] P. J. Weinberger, Exponents of the class groups of complex quadratic fields, Acta Arith. 22 (1973), 117-124. | Zbl 0217.04202