The value of the Estermann zeta functions at s=0
Makoto Ishibashi
Acta Arithmetica, Tome 69 (1995), p. 357-361 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:206825
@article{bwmeta1.element.bwnjournal-article-aav73i4p357bwm,
     author = {Makoto Ishibashi},
     title = {The value of the Estermann zeta functions at s=0},
     journal = {Acta Arithmetica},
     volume = {69},
     year = {1995},
     pages = {357-361},
     zbl = {0845.11034},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav73i4p357bwm}
}
Makoto Ishibashi. The value of the Estermann zeta functions at s=0. Acta Arithmetica, Tome 69 (1995) pp. 357-361. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav73i4p357bwm/

[000] [1] T. Estermann, On the representation of a number as the sum of two products, Proc. London Math. Soc. (2) 31 (1930), 123-133. | Zbl 56.0174.02

[001] [2] K. Girstmair, Character coordinates and annihilators of cyclotomic numbers, Manuscripta Math. 59 (1987), 375-389. | Zbl 0624.12006

[002] [3] K. Iwasawa, Lectures on p-adic L-functions, Ann. of Math. Stud. 74, Princeton Univ. Press, Princeton, N.J., 1972. | Zbl 0236.12001

[003] [4] M. Jutila, On exponential sums involving the divisor function, J. Reine Angew. Math. 355 (1985), 173-190. | Zbl 0542.10032

[004] [5] I. Kiuchi, On an exponential sum involving the arithmetic function σa(n), Math. J. Okayama Univ. 29 (1987), 93-205. | Zbl 0643.10032

[005] [6] Y. Motohashi, Riemann-Siegel Formula, Lecture Notes, University of Colorado, Boulder, 1987.