The period lengths of inversive congruential recursions
Wun-Seng Chou
Acta Arithmetica, Tome 69 (1995), p. 325-341 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:206823
@article{bwmeta1.element.bwnjournal-article-aav73i4p325bwm,
     author = {Wun-Seng Chou},
     title = {The period lengths of inversive congruential recursions},
     journal = {Acta Arithmetica},
     volume = {69},
     year = {1995},
     pages = {325-341},
     zbl = {0852.11038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav73i4p325bwm}
}
Wun-Seng Chou. The period lengths of inversive congruential recursions. Acta Arithmetica, Tome 69 (1995) pp. 325-341. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav73i4p325bwm/

[000] [1] W.-S. Chou, On inversive maximal period polynomials over finite fields, Appl. Algebra Engrg. Comm. Comput. 6 (1995), 245-250. | Zbl 0832.11042

[001] [2] W.-S. Chou, The period lengths of inversive pseudorandom vector generators, Finite Fields Appl. 1 (1995), 126-132. | Zbl 0822.11054

[002] [3] J. Eichenauer and J. Lehn, A non-linear congruential pseudorandom number generator, Statist. Hefte 27 (1986), 315-326. | Zbl 0607.65001

[003] [4] J. Eichenauer, J. Lehn and A. Topuzoğlu, A nonlinear congruential pseudorandom number generator with power of two modulus, Math. Comp. 51 (1988), 757-759. | Zbl 0701.65008

[004] [5] J. Eichenauer-Herrmann, Inversive congruential pseudorandom numbers: a tutorial, Internat. Statist. Rev. 60 (1992), 167-176. | Zbl 0766.65002

[005] [6] J. Eichenauer-Herrmann, Construction of inversive congruential pseudorandom number generators with maximal period length, J. Comput. Appl. Math. 40 (1992), 345-349. | Zbl 0761.65001

[006] [7] J. Eichenauer-Herrmann and A. Topuzoğlu, On the period length of congruential pseudorandom number sequences generated by inversions, J. Comput. Appl. Math. 31 (1990), 87-96. | Zbl 0704.65001

[007] [8] M. Flahive and H. Niederreiter, On inversive congruential generators for pseudorandom numbers, in: Finite Fields, Coding Theory, and Advances in Communications and Computing, G. L. Mullen and P. J.-S. Shiue (eds.), Marcel Dekker, New York, 1992, 75-80. | Zbl 0790.11058

[008] [9] K. Huber, On the period length of generalized inversive pseudorandom generators, Appl. Algebra Engrg. Comm. Comput. 5 (1994), 255-260. | Zbl 0796.11030

[009] [10] H. Niederreiter, Finite fields and their applications, in: Contributions to General Algebra, Vol. 7, Vienna, 1990, Teubner, Stuttgart, 1991. | Zbl 0742.11057

[010] [11] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, PA, 1992. | Zbl 0761.65002

[011] [12] H. Niederreiter, Pseudorandom vector generation by the inversive method, ACM Trans. Modeling & Computer Simulation 4 (1994), 191-212. | Zbl 0847.11039