@article{bwmeta1.element.bwnjournal-article-aav73i3p271bwm, author = {James G. Huard and Pierre Kaplan and Kenneth S. Williams}, title = {The Chowla-Selberg formula for genera}, journal = {Acta Arithmetica}, volume = {69}, year = {1995}, pages = {271-301}, zbl = {0855.11018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav73i3p271bwm} }
James G. Huard; Pierre Kaplan; Kenneth S. Williams. The Chowla-Selberg formula for genera. Acta Arithmetica, Tome 69 (1995) pp. 271-301. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav73i3p271bwm/
[000] [1] J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, New York, 1987.
[001] [2] D. A. Buell, Binary Quadratic Forms, Springer, New York, 1989.
[002] [3] H. Cohn, A Second Course in Number Theory, Wiley, New York, 1962.
[003] [4] L. E. Dickson, Introduction to the Theory of Numbers, Dover, New York, 1957. | Zbl 0084.26901
[004] [5] P. G. L. Dirichlet, Vorlesungen über Zahlentheorie, Chelsea, New York, 1968.
[005] [6] D. R. Estes and G. Pall, Spinor genera of binary quadratic forms, J. Number Theory 5 (1973), 421-432. | Zbl 0268.10010
[006] [7] K. Hardy and K. S. Williams, The class number of pairs of positive-definite binary quadratic forms, Acta Arith. 52 (1989), 103-117. | Zbl 0687.10014
[007] [8] M. Kaneko, A generalization of the Chowla-Selberg formula and the zeta functions of quadratic orders, Proc. Japan Acad. 66 (1990), 201-203. | Zbl 0721.11046
[008] [9] P. Kaplan and K. S. Williams, The Chowla-Selberg formula for non-fundamental discriminants, preprint, 1992.
[009] [10] Y. Nakkajima and Y. Taguchi, A generalization of the Chowla-Selberg formula, J. Reine Angew. Math. 419 (1991), 119-124. | Zbl 0721.11045
[010] [11] A. Schinzel and U. Zannier, Distribution of solutions of diophantine equations f₁(x₁) f₂(x₂) = f₃(x₃), where are polynomials, Rend. Sem. Mat. Univ. Padova 87 (1992), 39-68.
[011] [12] A. Selberg and S. Chowla, On Epstein's zeta-function, J. Reine Angew. Math. 227 (1967), 86-110. | Zbl 0166.05204
[012] [13] C. L. Siegel, Advanced Analytic Number Theory, Tata Institute of Fundamental Research, Bombay, 1980. | Zbl 0478.10001
[013] [14] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Institut Élie Cartan 13 (1990), Université de Nancy 1.
[014] [15] H. Weber, Lehrbuch der Algebra, Vol. III, 3rd ed., Chelsea, New York, 1961.
[015] [16] K. S. Williams and N.-Y. Zhang, The Chowla-Selberg relation for genera, preprint, 1993.
[016] [17] I. J. Zucker, The evaluation in terms of Γ-functions of the periods of elliptic curves admitting complex multiplication, Math. Proc. Cambridge Philos. Soc. 82 (1977), 111-118. | Zbl 0356.33003