Numbers with a large prime factor
R. C. Baker ; G. Harman
Acta Arithmetica, Tome 69 (1995), p. 119-145 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:206814
@article{bwmeta1.element.bwnjournal-article-aav73i2p119bwm,
     author = {R. C. Baker and G. Harman},
     title = {Numbers with a large prime factor},
     journal = {Acta Arithmetica},
     volume = {69},
     year = {1995},
     pages = {119-145},
     zbl = {0834.11037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav73i2p119bwm}
}
R. C. Baker; G. Harman. Numbers with a large prime factor. Acta Arithmetica, Tome 69 (1995) pp. 119-145. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav73i2p119bwm/

[000] [1] R. C. Baker, The greatest prime factor of the integers in an interval, Acta Arith. 47 (1986), 193-231. | Zbl 0553.10035

[001] [2] R. C. Baker, G. Harman and J. Rivat, Primes of the form [nc], J. Number Theory, to appear.

[002] [3] E. Bombieri and H. Iwaniec, On the order of ζ(1/2 + it), Ann. Scuola Norm. Sup. Pisa 13 (1986), 449-472. | Zbl 0615.10047

[003] [4] A. Y. Cheer and D. A. Goldston, A differential delay equation arising from the sieve of Eratosthenes, Math. Comp. 55 (1990), 129-141.

[004] [5] H. Davenport, Multiplicative Number Theory, 2nd ed. revised by H. L. Montgomery, Springer, New York, 1980. | Zbl 0453.10002

[005] [6] E. Fouvry, Sur le théorème de Brun-Titchmarsh, Acta Arith. 43 (1984), 417-424.

[006] [7] E. Fouvry and H. Iwaniec, Exponential sums with monomials, J. Number Theory 33 (1989), 311-333. | Zbl 0687.10028

[007] [8] J. B. Friedlander, Integers free from large and small primes, Proc. London Math. Soc. 33 (1986), 565-576. | Zbl 0344.10021

[008] [9] S. W. Graham, The greatest prime factor of the integers in an interval, J. London Math. Soc. 24 (1981), 427-440. | Zbl 0442.10028

[009] [10] S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums, Cambridge Univ. Press, 1991. | Zbl 0713.11001

[010] [11] G. Harman, On the distribution of αp modulo one, J. London Math. Soc. 27 (2) (1983), 9-13. | Zbl 0504.10018

[011] [12] C. H. Jia, The greatest prime factor of integers in short intervals II, Acta Math. Sinica 32 (1989), 188-199 (in Chinese). | Zbl 0672.10030

[012] [13] H.-Q. Liu, The greatest prime factor of the integers in an interval, Acta Arith. 65 (1993), 301-328. | Zbl 0797.11071

[013] [14] S. H. Min, Methods in Number Theory, Vol. 2, Science Press, 1983 (in Chinese).

[014] [15] K. Ramachandra, A note on numbers with a large prime factor, J. London Math. Soc. 1 (2) (1969), 303-306. | Zbl 0179.07301

[015] [16] K. Ramachandra, A note on numbers with a large prime factor, II, J. Indian Math. Soc. 34 (1970), 39-48. | Zbl 0218.10057

[016] [17] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, revised by D. R. Heath-Brown, Oxford University Press, 1986. | Zbl 0601.10026

[017] [18] I. M. Vinogradov, The Method of Trigonometrical Sums in the Theory of Numbers, translated and annotated by A. Davenport and K. F. Roth, Wiley, New York, 1954. | Zbl 0055.27504

[018] [19] N. Watt, Exponential sums and the Riemann zeta function II, J. London Math. Soc. 39 (1989), 385-404. | Zbl 0678.10027

[019] [20] J. Wu, P₂ dans les petits intervalles, in: Séminaire de Théorie des Nombres, Paris 1989-90, Birkhäuser, 1992, 233-267