On Šnirelman's constant under the Riemann hypothesis
Leszek Kaniecki
Acta Arithmetica, Tome 69 (1995), p. 361-374 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:206802
@article{bwmeta1.element.bwnjournal-article-aav72i4p361bwm,
     author = {Leszek Kaniecki},
     title = {On \v Snirelman's constant under the Riemann hypothesis},
     journal = {Acta Arithmetica},
     volume = {69},
     year = {1995},
     pages = {361-374},
     zbl = {0846.11058},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav72i4p361bwm}
}
Leszek Kaniecki. On Šnirelman's constant under the Riemann hypothesis. Acta Arithmetica, Tome 69 (1995) pp. 361-374. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav72i4p361bwm/

[000] [1] J. R. Chen and T. Z. Wang, On the odd Goldbach problem, Acta Math. Sinica 32 (1989), 702-718 (in Chinese). | Zbl 0695.10041

[001] [2] H. Davenport, Multiplicative Number Theory, Springer, 1980.

[002] [3] M. Deshouillers, Sur la constante de Schnirelmann, Sém. Delange-Pisot-Poitou, 17e année, 1975/6, fasc. 2, exp. No. G 16, 6 p., Paris, 1977.

[003] [4] H. M. Edwards, Riemann's Zeta Function, Academic Press, 1974. | Zbl 0315.10035

[004] [5] A. Granville, J. van de Lune and H. J. J. te Riele, Checking the Goldbach conjecture on a vector computer, in: Number Theory and Applications, R. A. Mollin (ed.), Kluwer, Dordrecht, 1989, 423-433. | Zbl 0679.10002

[005] [6] L. Kaniecki, Some remarks on a result of A. Selberg, Funct. Approx. Comment. Math. 22 (1993), 171-179. | Zbl 0824.11050

[006] [7] H. L. Montgomery and R. C. Vaughan, The exceptional set in Goldbach's problem, Acta Arith. 27 (1975), 353-370. | Zbl 0301.10043

[007] [8] K. Prachar, Primzahlverteilung, Springer, 1957.

[008] [9] O. Ramaré, On Šnirelman's constant, Les prépublication de l'Institut Élie Cartan 95, no 4, to appear.

[009] [10] H. Riesel and R. C. Vaughan, On sums of primes, Ark. Mat. 21 (1983), 45-74. | Zbl 0516.10044

[010] [11] L. Schoenfeld, Sharper bounds for the Čebyshev functions ψ and θ, II, Math. Comp. 30 (1976), 337-360. | Zbl 0326.10037

[011] [12] A. Selberg, On the normal density of primes in small intervals and the differences between consecutive primes, Arch. Math. Naturvid. (6) 47 (1943), 87-105. | Zbl 0063.06869

[012] [13] M. K. Shen, On checking the Goldbach conjecture, Nordisk Tidskr. 4 (1964), 243-245. | Zbl 0136.33602

[013] [14] M. K. Sinisalo, Checking the Goldbach conjecture up to 4· 10¹¹, Math. Comp. 61 (1993), 931-934. | Zbl 0783.11037

[014] [15] M. L. Stein and P. R. Stein, New experimental results on the Goldbach conjecture, Math. Mag. 38 (1965), 72-80. | Zbl 0132.03102

[015] [16] J. Young and A. Potler, First occurrence prime gaps, Math. Comp. 52 (1989), 221-224. | Zbl 0661.10011