Class numbers of certain real abelian fields
Jae Moon Kim
Acta Arithmetica, Tome 69 (1995), p. 335-345 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:206800
@article{bwmeta1.element.bwnjournal-article-aav72i4p335bwm,
     author = {Jae Moon Kim},
     title = {Class numbers of certain real abelian fields},
     journal = {Acta Arithmetica},
     volume = {69},
     year = {1995},
     pages = {335-345},
     zbl = {0841.11056},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav72i4p335bwm}
}
Jae Moon Kim. Class numbers of certain real abelian fields. Acta Arithmetica, Tome 69 (1995) pp. 335-345. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav72i4p335bwm/

[000] [1] J. Coates and A. Wiles, On p-adic L-functions and elliptic units, J. Austral. Math. Soc. 26 (1978), 1-25. | Zbl 0442.12007

[001] [2] V. Ennola, On relations between cyclotomic units, J. Number Theory 4 (1972), 236-247. | Zbl 0236.12005

[002] [3] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284. | Zbl 0334.12013

[003] [4] K. Iwasawa, On cohomology groups of units for ℤₚ-extensions, Amer. J. Math. 105 (1983), 189-200.

[004] [5] J. M. Kim, Cohomology groups of cyclotomic units, J. Algebra 152 (1992), 514-519. | Zbl 0776.11066

[005] [6] J. M. Kim, Coates-Wiles series and Mirimanoff's polynomial, J. Number Theory, to appear. | Zbl 0842.11038

[006] [7] J. M. Kim, Units and cyclotomic units in ℤₚ-extensions, Nagoya Math. J. (1995), to appear.

[007] [8] P. Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, New York, 1972.

[008] [9] W. Sinnott, On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math. 108 (1978), 107-134. | Zbl 0395.12014

[009] [10] L. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Springer, New York, 1980