The 4-rank of KOF for real quadratic fields F
Hourong Qin
Acta Arithmetica, Tome 69 (1995), p. 323-333 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:206799
@article{bwmeta1.element.bwnjournal-article-aav72i4p323bwm,
     author = {Hourong Qin},
     title = {The 4-rank of $K2O\_F$ for real quadratic fields F},
     journal = {Acta Arithmetica},
     volume = {69},
     year = {1995},
     pages = {323-333},
     zbl = {0834.11050},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav72i4p323bwm}
}
Hourong Qin. The 4-rank of $K₂O_F$ for real quadratic fields F. Acta Arithmetica, Tome 69 (1995) pp. 323-333. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav72i4p323bwm/

[000] [1] B. Brauckmann, The 2-Sylow subgroup of the tame kernel of number fields, Canad. J. Math. 43 (1991), 215-264. | Zbl 0729.11061

[001] [2] J. Browkin and A. Schinzel, On Sylow 2-subgroups of KOF for quadratic fields F, J. Reine Angew. Math. 331 (1982), 104-113.

[002] [3] A. Candiotti and K. Kramer, On the 2-Sylow subgroup of the Hilbert kernel of K₂ of number fields, Acta Arith. 52 (1989), 49-65. | Zbl 0705.19005

[003] [4] P. E. Conner and J. Hurrelbrink, Examples of quadratic number fields with K₂𝓞 containing no element of order four, preprint.

[004] [5] P. E. Conner and J. Hurrelbrink, The 4-rank of K₂𝓞, Canad. J. Math. 41 (1989), 932-960. | Zbl 0705.19006

[005] [6] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, New York, 1982. | Zbl 0482.10001

[006] [7] M. Kolster, The structure of the 2-Sylow subgroup of K₂(O). I, Comment. Math. Helv. 61 (1986), 576-588.

[007] [8] J. Milnor, Introduction to Algebraic K-theory, Ann. of Math. Stud. 72, Princeton University Press, 1971. | Zbl 0237.18005

[008] [9] J. Neukirch, Class Field Theory, Springer, Berlin, 1986. | Zbl 0587.12001

[009] [10] O. T. O'Meara, Introduction to Quadratic Forms, Springer, Berlin, 1963.

[010] [11] H. Qin, The 2-Sylow subgroups of KOF for real quadratic fields F, Science in China Ser. A 23 (12) (1993), 1254-1263 (in Chinese).

[011] [12] H. Qin, The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields, Acta Arith. 69 (1995), 153-169. | Zbl 0826.11055

[012] [13] J. Tate, Relations between K₂ and Galois cohomology, Invent. Math. 36 (1976), 257-274. | Zbl 0359.12011

[013] [14] J. Urbanowicz, On the 2-primary part of a conjecture of Birch and Tate, Acta Arith. 43 (1983), 69-81. | Zbl 0529.12008