Low-discrepancy sequences obtained from algebraic function fields over finite fields
Harald Niederreiter ; Chaoping Xing
Acta Arithmetica, Tome 69 (1995), p. 281-298 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:206796
@article{bwmeta1.element.bwnjournal-article-aav72i3p281bwm,
     author = {Harald Niederreiter and Chaoping Xing},
     title = {Low-discrepancy sequences obtained from algebraic function fields over finite fields},
     journal = {Acta Arithmetica},
     volume = {69},
     year = {1995},
     pages = {281-298},
     zbl = {0833.11035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav72i3p281bwm}
}
Harald Niederreiter; Chaoping Xing. Low-discrepancy sequences obtained from algebraic function fields over finite fields. Acta Arithmetica, Tome 69 (1995) pp. 281-298. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav72i3p281bwm/

[000] [1] P. Bratley, B. L. Fox and H. Niederreiter, Implementation and tests of low-discrepancy sequences, ACM Trans. Model. Comput. Simulation 2 (1992), 195-213. | Zbl 0846.11044

[001] [2] H. Faure, Discrépance de suites associées à un système de numération (en dimension s), Acta Arith. 41 (1982), 337-351. | Zbl 0442.10035

[002] [3] G. Larcher, H. Niederreiter and W. C. Schmid, Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration, Monatsh. Math., to appear. | Zbl 0876.11042

[003] [4] G. Larcher and W. C. Schmid, Multivariate Walsh series, digital nets and quasi-Monte Carlo integration, in: Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, H. Niederreiter and P. J.-S. Shiue (eds.), Lecture Notes in Statist., Springer, Berlin, to appear. | Zbl 0831.65018

[004] [5] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, revised ed., Cambridge Univ. Press, Cambridge, 1994. | Zbl 0820.11072

[005] [6] G. L. Mullen, A. Mahalanabis and H. Niederreiter, Tables of (t,m,s)-net and (t,s)-sequence parameters, in: Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, H. Niederreiter and P. J.-S. Shiue (eds.), Lecture Notes in Statist., Springer, Berlin, to appear. | Zbl 0838.65004

[006] [7] H. Niederreiter, Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987), 273-337. | Zbl 0626.10045

[007] [8] H. Niederreiter, Low-discrepancy and low-dispersion sequences, J. Number Theory 30 (1988), 51-70. | Zbl 0651.10034

[008] [9] H. Niederreiter, A combinatorial problem for vector spaces over finite fields, Discrete Math. 96 (1991), 221-228. | Zbl 0747.11063

[009] [10] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, Penn., 1992. | Zbl 0761.65002

[010] [11] H. Niederreiter, Pseudorandom numbers and quasirandom points, Z. Angew. Math. Mech. 73 (1993), T648-T652. | Zbl 0796.11028

[011] [12] H. Niederreiter, Factorization of polynomials and some linear-algebra problems over finite fields, Linear Algebra Appl. 192 (1993), 301-328. | Zbl 0845.11042

[012] [13] I. M. Sobol', The distribution of points in a cube and the approximate evaluation of integrals, Zh. Vychisl. Mat. i Mat. Fiz. 7 (1967), 784-802 (in Russian).

[013] [14] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993.