@article{bwmeta1.element.bwnjournal-article-aav72i2p131bwm, author = {N. Watt}, title = {Short intervals almost all containing primes}, journal = {Acta Arithmetica}, volume = {69}, year = {1995}, pages = {131-167}, zbl = {0832.11030}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav72i2p131bwm} }
N. Watt. Short intervals almost all containing primes. Acta Arithmetica, Tome 69 (1995) pp. 131-167. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav72i2p131bwm/
[000] [1] R. C. Baker and G. Harman, The difference between consecutive primes, preprint. | Zbl 0853.11076
[001] [2] A. Buchstab, Asymptotic estimates of a general number-theoretic function, Mat. Sb. (N.S.) (2) 44 (1937), 1239-1246 (in Russian with a German summary).
[002] [3] H. Davenport, Multiplicative Number Theory, Springer, 1980.
[003] [4] J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math. 70 (1982), 219-288.
[004] [5] J.-M. Deshouillers and H. Iwaniec, Power mean values of the Riemann zeta-function, Mathematika 29 (1982), 202-212.
[005] [6] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1954. | Zbl 0058.03301
[006] [7] G. Harman, Almost-primes in short intervals, Math. Ann. 258 (1981), 107-112. | Zbl 0474.10034
[007] [8] G. Harman, Primes in short intervals, Math. Z. 180 (1982), 335-348. | Zbl 0482.10040
[008] [9] G. Harman, On the distribution of αp modulo one, J. London Math. Soc. (2) 27 (1983), 9-18. | Zbl 0504.10018
[009] [10] G. Harman, On the distribution of αp modulo one II, preprint.
[010] [11] D. R. Heath-Brown, Gaps between primes and the pair correlation of zeros of the zeta-function, Acta Arith. 41 (1982), 85-99. | Zbl 0414.10044
[011] [12] D. R. Heath-Brown, Finding primes by sieve methods, Proc. 1982 ICM, Warsaw, 1983, PWN, Vol. 1, Warszawa, 1984, 487-492. | Zbl 0565.10039
[012] [13] D. R. Heath-Brown and H. Iwaniec, On the difference between consecutive primes, Invent. Math. 55 (1979), 49-69. | Zbl 0424.10028
[013] [14] M. N. Huxley, On the difference between consecutive primes, Invent. Math. 15 (1972), 164-170. | Zbl 0241.10026
[014] [15] H. Iwaniec, Rosser's sieve, Acta Arith. 36 (1980), 171-202.
[015] [16] H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith. 37 (1980), 307-320. | Zbl 0444.10038
[016] [17] H. Iwaniec and M. Jutila, Primes in short intervals, Ark. Mat. 17 (1979), 167-176. | Zbl 0408.10029
[017] [18] H. Iwaniec and J. Pintz, Primes in short intervals, Monatsh. Math. 98 (1984), 115-143. | Zbl 0544.10040
[018] [19] C. Jia, On the Goldbach numbers in the short interval, Science in China, to appear.
[019] [20] C. Jia, On the difference between consecutive primes, Science in China,, to appear.
[020] [21] H. Li, Primes in short intervals, unpublished manuscript. | Zbl 0875.11016
[021] [22] H. Li, Primes in short intervals, preprint. | Zbl 0875.11016
[022] [23] S. Lou and Q. Yao, A Chebychev's type of prime number theorem in a short interval - II, Hardy-Ramanujan J. 15 (1992), 1-33. | Zbl 0780.11039
[023] [24] H. Mikawa, Almost-primes in arithmetic progressions and short intervals, Tsukuba J. Math. (2) 13 (1989), 387-401. | Zbl 0689.10052
[024] [25] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, 1971. | Zbl 0216.03501
[025] [26] H. L. Montgomery and R. C. Vaughan, Hilbert's inequality, J. London Math. Soc. (2) 8 (1974), 73-82. | Zbl 0281.10021
[026] [27] H. L. Montgomery and R. C. Vaughan, The exceptional set in Goldbach's problem, Acta Arith. 27 (1975), 353-370. | Zbl 0301.10043
[027] [28] Y. Motohashi, A note on almost-primes in short intervals, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), 225-226. | Zbl 0445.10032
[028] [29] C. J. Mozzochi, On the difference between consecutive primes, J. Number Theory 24 (1986), 181-187.
[029] [30] A. Perelli and J. Pintz, On the exceptional set for Goldbach's Problem in short intervals, J. London Math. Soc. (2) 47 (1993), 41-49. | Zbl 0806.11042
[030] [31] A. Selberg, On the normal density of primes in short intervals, and the difference between consecutive primes, Arch. Math. Naturvid. 47 (1943), 87-105. | Zbl 0063.06869
[031] [32] P. Shiu, A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math. 313 (1980), 161-170. | Zbl 0412.10030
[032] [33] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford, 1986. | Zbl 0601.10026
[033] [34] N. Watt, Kloosterman sums and a mean value for Dirichlet polynomials, J. Number Theory, to appear. | Zbl 0837.11050
[034] [35] D. Wolke, Fast-Primzahlen in kurzen Intervallen, Math. Ann. 224 (1979), 233-242 | Zbl 0402.10042