Covering the integers by arithmetic sequences
Zhi Wei Sun
Acta Arithmetica, Tome 69 (1995), p. 109-129 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:206788
@article{bwmeta1.element.bwnjournal-article-aav72i2p109bwm,
     author = {Zhi Wei Sun},
     title = {Covering the integers by arithmetic sequences},
     journal = {Acta Arithmetica},
     volume = {69},
     year = {1995},
     pages = {109-129},
     zbl = {0841.11011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav72i2p109bwm}
}
Zhi Wei Sun. Covering the integers by arithmetic sequences. Acta Arithmetica, Tome 69 (1995) pp. 109-129. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav72i2p109bwm/

[000] [1] M. A. Berger, A. Felzenbaum and A. S. Fraenkel, Improvements to the Newman-Znám result for disjoint covering systems, Acta Arith. 50 (1988), 1-13. | Zbl 0551.10003

[001] [2] R. B. Crittenden and C. L. Vanden Eynden, A proof of a conjecture of Erdős, Bull. Amer. Math. Soc. 75 (1969), 1326-1329. | Zbl 0186.07902

[002] [3] R. B. Crittenden and C. L. Vanden Eynden, Any n arithmetic progressions covering the first 2ⁿ integers cover all integers, Proc. Amer. Math. Soc. 24 (1970), 475-481. | Zbl 0192.39001

[003] [4] R. B. Crittenden and C. L. Vanden Eynden, The union of arithmetic progressions with differences not less than k, Amer. Math. Monthly 79 (1972), 630. | Zbl 0239.10031

[004] [5] P. Erdős, On integers of the form 2k+p and some related problems, Summa Brasil. Math. 2 (1950), 113-123.

[005] [6] P. Erdős, Remarks on number theory IV: Extremal problems in number theory I, Mat. Lapok 13 (1962), 228-255.

[006] [7] P. Erdős, Problems and results on combinatorial number theory III, in: Number Theory Day, M. B. Nathanson (ed.), Lecture Notes in Math. 626, Springer, New York, 1977, 43-72.

[007] [8] P. Erdős, Problems and results in number theory, in: Recent Progress in Analytic Number Theory, H. Halberstam and C. Hooley (eds.), Vol. 1, Academic Press, London, 1981, 1-14.

[008] [9] R. K. Guy, Unsolved Problems in Number Theory, Springer, New York, 1981.

[009] [10] M. Newman, Roots of unity and covering sets, Math. Ann. 191 (1971), 279-282. | Zbl 0203.35205

[010] [11] Š. Porubský, Covering systems and generating functions, Acta Arith. 26 (1974/75), 223-231. | Zbl 0268.10044

[011] [12] Š. Porubský, On m times covering systems of congruences, Acta Arith. 29 (1976), 159-169. | Zbl 0282.10033

[012] [13] Š. Porubský, Results and problems on covering systems of residue classes, Mitt. Math. Sem. Giessen 1981, no. 150, 1-85. | Zbl 0479.10032

[013] [14] S. K. Stein, Unions of arithmetic sequences, Math. Ann. 134 (1958), 289-294. | Zbl 0084.04302

[014] [15] Z. W. Sun, Several results on systems of residue classes, Adv. in Math. (Beijing) 18 (1989), 251-252.

[015] [16] Z. W. Sun, An improvement to the Znám-Newman result, Chinese Quart. J. Math. 6 (3) (1991), 90-96.

[016] [17] Z. W. Sun, On exactly m times covers, Israel. J. Math. 77 (1992), 345-348. | Zbl 0768.11001

[017] [18] S. P. Tung, Complexity of sentences over number rings, SIAM J. Comp. 20 (1991), 126-143. | Zbl 0717.03002

[018] [19] M. Z. Zhang, A note on covering systems of residue classes, J. Sichuan Univ. (Nat. Sci. Ed.) 26 (1989), Special Issue, 185-188.

[019] [20] Š. Znám, On exactly covering systems of arithmetic sequences, Math. Ann. 180 (1969), 227-232. | Zbl 0169.37405

[020] [21] Š. Znám, A survey of covering systems of congruences, Acta Math. Univ. Comenian. 40/41 (1982), 59-79.