Theta and L-function splittings
Jeffrey Stopple
Acta Arithmetica, Tome 69 (1995), p. 101-108 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:206787
@article{bwmeta1.element.bwnjournal-article-aav72i2p101bwm,
     author = {Jeffrey Stopple},
     title = {Theta and L-function splittings},
     journal = {Acta Arithmetica},
     volume = {69},
     year = {1995},
     pages = {101-108},
     zbl = {0848.11022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav72i2p101bwm}
}
Jeffrey Stopple. Theta and L-function splittings. Acta Arithmetica, Tome 69 (1995) pp. 101-108. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav72i2p101bwm/

[000] [I] A. Erdélyi et al., Tables of Integral Transforms, based, in part, on notes left by Harry Bateman, McGraw-Hill, 1954.

[001] [H] A. Erdélyi et al., Higher Transcendental Functions, based, in part, on notes left by Harry Bateman, McGraw-Hill, 1953.

[002] [G] I. S. Gradshteĭn and I. M. Ryzhik, Tables of Integrals, Series, and Products, 4th ed., Academic Press, 1980.

[003] [1] K. Doi and H. Naganuma, On the functional equation of certain Dirichlet series, Invent. Math. 9 (1969), 1-14. | Zbl 0182.54301

[004] [2] S. Kudla, Theta functions and Hilbert modular forms, Nagoya Math. J. 69 (1978), 97-106. | Zbl 0371.10021

[005] [3] S. Kudla, Relations between automorphic forms produced by theta-functions, in: Modular Functions of One Variable VI, Lecture Notes in Math. 627, Springer, 1977, 277-285.

[006] [4] S. Niwa, Modular forms of half integral weight and the integral of certain theta-functions, Nagoya Math. J. 56 (1974), 147-161. | Zbl 0303.10027

[007] [5] M.-F.Vignéras, Séries thêta des formes quadratiques indéfinies, in: Modular Functions of One Variable VI, Lecture Notes in Math. 627, Springer, 1977, 227-239.

[008] [6] D. Zagier, Modular forms associated to real quadratic fields, Invent. Math. 30 (1975), 1-46. | Zbl 0308.10014