@article{bwmeta1.element.bwnjournal-article-aav71i4p301bwm, author = {Jun-Ichi Tamura}, title = {A class of transcendental numbers having explicit g-adic and Jacobi-Perron expansions of arbitrary dimension}, journal = {Acta Arithmetica}, volume = {69}, year = {1995}, pages = {301-329}, zbl = {0828.11036}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav71i4p301bwm} }
Jun-Ichi Tamura. A class of transcendental numbers having explicit g-adic and Jacobi-Perron expansions of arbitrary dimension. Acta Arithmetica, Tome 69 (1995) pp. 301-329. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav71i4p301bwm/
[000] [1] W. W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198. | Zbl 0366.10027
[001] [2] L. Bernstein, The Jacobi-Perron Algorithm. Its Theory and Application, Lecture Notes in Math. 207, Springer, 1971. | Zbl 0213.05201
[002] [3] P. E. Böhmer, Über die Transzendenz gewisser dyadischer Brüche, Math. Ann. 96 (1927), 367-377. | Zbl 52.0188.02
[003] [4] P. Bundschuh, Über eine Klasse reeller transzendenter Zahlen mit explizit angebbarer g-adischer und Kettenbruch-Entwicklung, J. Reine Angew. Math. 318 (1980), 110-119. | Zbl 0425.10038
[004] [5] L. V. Danilov, Some classes of transcendental numbers, Mat. Zametki 12 (1972), 149-154 (in Russian); English transl.: Math. Notes 12 (1972), 524-527.
[005] [6] J. L. Davison, A series and its associated continued fraction, Proc. Amer. Math. Soc. 63 (1977), 29-32. | Zbl 0326.10030
[006] [7] P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), 335-400. | Zbl 37.0283.01
[007] [8] R. Honsberger, Ingenuity in Mathematics, Random House, 1970.
[008] [9] A. Hurwitz, Über einen Satz des Herrn Kakeya, Tôhoku Math. J. 4 (1913), 89-93; also in: Mathematische Werke von Adolf Hurwitz, Bd. II, Birkhäuser, 1963, 627-631.
[009] [10] S. Kakeya, On the limits of the roots of an algebraic equation with positive coefficients, Tôhoku Math. J. 2 (1912), 140-142. | Zbl 43.0147.03
[010] [11] K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), 342-366. | Zbl 55.0115.01
[011] [12] E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality, Nauka, Moscow, 1988, 168-175 (in Russian).
[012] [13] K. Nishioka, I. Shiokawa and J. Tamura, Arithmetical properties of certain power series, J. Number Theory 42 (1992), 61-87. | Zbl 0770.11039
[013] [14] V. I. Parusnikov, The Jacobi-Perron algorithm and simultaneous approximation of functions, Mat. Sb. 114 (156) (1982), 322-333 (in Russian). | Zbl 0461.30003
[014] [15] G. Pólya and G. Szegö, Problems and Theorems in Analysis II, Springer, 1976. | Zbl 0311.00002
[015] [16] A. Salomaa, Jewels of Formal Language Theory, Pitman, 1981. | Zbl 0487.68063
[016] [17] A. Salomaa, Computation and Automata, Cambridge Univ. Press, 1985. | Zbl 0565.68046
[017] [18] N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973. | Zbl 0286.10001
[018] [19] J. Tamura, Transcendental numbers having explicit g-adic and Jacobi-Perron expansions, in: Séminaire de Théorie des Nombres de Bordeaux 4, 1992, 75-95. | Zbl 0763.11029
[019] [20] J. Tamura, A class of transcendental numbers with explicit g-adic expansion and the Jacobi-Perron algorithm, Acta Arith. 61 (1992), 51-67. | Zbl 0747.11029