On the set of numbers {14, 22, 30, 42, 90}
Vamsi K. Mootha
Acta Arithmetica, Tome 69 (1995), p. 259-263 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:206773
@article{bwmeta1.element.bwnjournal-article-aav71i3p259bwm,
     author = {Vamsi K. Mootha},
     title = {On the set of numbers {14, 22, 30, 42, 90}},
     journal = {Acta Arithmetica},
     volume = {69},
     year = {1995},
     pages = {259-263},
     zbl = {0820.11014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav71i3p259bwm}
}
Vamsi K. Mootha. On the set of numbers {14, 22, 30, 42, 90}. Acta Arithmetica, Tome 69 (1995) pp. 259-263. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav71i3p259bwm/

[000] [1] A. Baker and H. Davenport, The equations 3x²-2=y² and 8x²-7=z², Quart. J. Math. 20 (1969), 129-137. | Zbl 0177.06802

[001] [2] G. Berzsenyi, Adventures among Pₜ-sets, Quantum 1 (1991), 57.

[002] [3] E. Brown, Sets in which xy+k is always a square, Math. Comp. 45 (1985), 613-620. | Zbl 0577.10015

[003] [4] L. E. Dickson, History of the Theory of Numbers, Vol. II, Carnegie Institution, Washington, 1920; reprinted, Chelsea, New York, 1966. | Zbl 47.0888.08

[004] [5] C. M. Grinstead, On a method of solving a class of diophantine equations, Math. Comp. 32 (1978), 936-940. | Zbl 0389.10015

[005] [6] P. Kanagasabapathy and T. Ponnudurai, The simultaneous diophantine equations y²-3x²=-2 and z²-8x²=-7, Quart. J. Math. 26 (1975), 275-278. | Zbl 0309.10008

[006] [7] V. Mootha and G. Berzsenyi, Characterizations and extendibility of Pₜ-sets, Fibonacci Quart. 27 (1989), 287-288. | Zbl 0674.10010

[007] [8] T. Nagell, Introduction to Number Theory, Wiley, New York, 1951. | Zbl 0042.26702

[008] [9] G. Sansone, Il sistema diofanteo N+1=x², 3N+1=y², 8N+1=z², Ann. Mat. Pura Appl. 111 (1976), 125-151. | Zbl 0339.10017