@article{bwmeta1.element.bwnjournal-article-aav71i3p209bwm, author = {Claudia Spiro-Silverman}, title = {Groups of cubefree order}, journal = {Acta Arithmetica}, volume = {69}, year = {1995}, pages = {209-227}, zbl = {0820.11058}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav71i3p209bwm} }
Claudia Spiro-Silverman. Groups of cubefree order. Acta Arithmetica, Tome 69 (1995) pp. 209-227. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav71i3p209bwm/
[000] [1] J.-R. Chen and J.-M. Liu, On the least prime in an arithmetical progression (III), (IV), Science in China Ser. A 32 (1989), 654-673, 782-809.
[001] [2] P. Erdős, Some asymptotic formulas in number theory, J. Indian Math. Soc. 12 (1948), 75-78. | Zbl 0041.36807
[002] [3] P. Erdős, M. R. Murty and V. K. Murty, On the enumeration of finite groups, J. Number Theory 25 (1987), 360-378. | Zbl 0612.10038
[003] [4] D. Gorenstein, Finite Groups, Series in Modern Mathematics, Harper and Row, New York, 1968, xv+527.
[004] [5] M. Hall, The Theory of Groups, Twelfth Printing, The Macmillan Company, New York, 1973, xiv+434.
[005] [6] D. R. Heath-Brown, Zero-free regions for Dirichlet's L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. 64 (1992), 265-338. | Zbl 0739.11033
[006] [7] Yu. V. Linnik, On the least prime in an arithmetic progression. II. The Deuring-Heilbronn Phenomenon, Rec. Math. [Math. Sbornik] N.S. 15 (57) (1994), 345-368.
[007] [8] M.-G. Lu, The asymptotic formula for F₂(x), Sci. Sinica Ser. A 30 (1987), 262-278.
[008] [9] M. R. Murty and V. K. Murty, On the number of groups of a given order, J. Number Theory 18 (1984), 178-191. | Zbl 0531.10047
[009] [10] C. A. Spiro, The probability that the number of groups of squarefree order is two more than a fixed prime, Proc. London Math. Soc. 60 (1990), 444-470. | Zbl 0707.11066
[010] [11] C. A. Spiro-Silverman, When the group-counting function assumes a prescribed integer value at squarefree integers frequently, but not extremely frequently, Acta Arith. 61 (1992), 1-12. | Zbl 0747.11039