@article{bwmeta1.element.bwnjournal-article-aav71i2p95bwm, author = {T. Zhan}, title = {A generalization of the Goldbach-Vinogradov theorem}, journal = {Acta Arithmetica}, volume = {69}, year = {1995}, pages = {95-106}, zbl = {0828.11056}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav71i2p95bwm} }
T. Zhan. A generalization of the Goldbach-Vinogradov theorem. Acta Arithmetica, Tome 69 (1995) pp. 95-106. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav71i2p95bwm/
[000] [1] P. X. Gallagher, A large sieve density estimate near σ=1, Invent. Math. 11 (1970), 329-339. | Zbl 0219.10048
[001] [2] H. Halberstam and H.-E. Richert, Sieve Method, Academic Press, 1974.
[002] [3] G. Harman, Primes in short intervals, Math. Z. 180 (1982), 335-348. | Zbl 0482.10040
[003] [4] H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith. 37 (1980), 307-320. | Zbl 0444.10038
[004] [5] C. Jia, Three primes theorem in short intervals, to appear. | Zbl 0688.10044
[005] [6] H. Mikawa, On the exceptional set in Goldbach problem, to appear. | Zbl 0778.11054
[006] [7] Chengdong Pan, Some new results in additive number theory, Acta Math. Sinica 9 (1959), 315-329.
[007] [8] Chengdong Pan and Chengbiao Pan, Goldbach Conjecture, Science Press, Peking, 1981.
[008] [9] B. Saffari and R. C. Vaughan, On the fractional parts of x/n and related sequences II, Ann. Inst. Fourier (Grenoble) 27 (1977), 1-30. | Zbl 0379.10023