@article{bwmeta1.element.bwnjournal-article-aav71i2p181bwm, author = {N. Saradha and T.N. Shorey and R. Tijdeman}, title = {On the equation x(x+1)... (x+k-1) = y(y+d)... (y+(mk-1)d), m=1,2}, journal = {Acta Arithmetica}, volume = {69}, year = {1995}, pages = {181-196}, zbl = {0828.11016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav71i2p181bwm} }
N. Saradha; T.N. Shorey; R. Tijdeman. On the equation x(x+1)... (x+k-1) = y(y+d)... (y+(mk-1)d), m=1,2. Acta Arithmetica, Tome 69 (1995) pp. 181-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav71i2p181bwm/
[000] [1] A. Baker, Bounds for the solutions of the hyperelliptic equation, Proc. Cambridge Philos. Soc. 65 (1969), 439-444. | Zbl 0174.33803
[001] [2] L. E. Dickson, History of the Theory of Numbers, Vol. II, first publ. in 1919. Reprint: Chelsea, New York, 1971. | Zbl 47.0100.04
[002] [3] Ya. Gabovich, On arithmetic progressions with equal products of terms, Colloq. Math. 15 (1966), 45-48 (in Russian).
[003] [4] Problèmes P543 et P545, R1, Colloq. Math. 19 (1968), 179-180.
[004] [5] N. Saradha and T. N. Shorey, On the ratio of two blocks of consecutive integers, Proc. Indian Acad. Sci. Math. Sci. 100 (1990), 107-132. | Zbl 0716.11017
[005] [6] N. Saradha and T. N. Shorey, On the equation x(x+d₁) ... (x + (k-1)d₁) = y(y+d₂) ... (y + (mk-1)d₂), Proc. Indian Acad. Sci. Math. Sci. 104 (1994), 1-12. | Zbl 0798.11008
[006] [7] N. Saradha, T. N. Shorey and R. Tijdeman, On arithmetic progressions of equal lengths with equal products, Math. Proc. Cambridge Philos. Soc., to appear. | Zbl 0833.11010
[007] [8] T. N. Shorey and R. Tijdeman, Perfect powers in products of terms in an arithmetical progression (II), Compositio Math. 82 (1992), 119-136. | Zbl 0763.11015