Rational approximations to linear forms in values of G-functions
Makoto Nagata
Acta Arithmetica, Tome 69 (1995), p. 313-341 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:206754
@article{bwmeta1.element.bwnjournal-article-aav70i4p313bwm,
     author = {Makoto Nagata},
     title = {Rational approximations to linear forms in values of G-functions},
     journal = {Acta Arithmetica},
     volume = {69},
     year = {1995},
     pages = {313-341},
     zbl = {0831.11036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav70i4p313bwm}
}
Makoto Nagata. Rational approximations to linear forms in values of G-functions. Acta Arithmetica, Tome 69 (1995) pp. 313-341. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav70i4p313bwm/

[000] [1] Y. André, G-functions and Geometry, Max-Planck-Institut, Bonn, 1989.

[001] [2] A. Baker, Transcendental Number Theory, Cambridge University Press, Cambridge, 1975. | Zbl 0297.10013

[002] [3] E. Bombieri, On G-functions, in: Recent Progress in Analytic Number Theory 2, Academic Press, New York, 1981, 1-67.

[003] [4] D. V. Chudnovsky and G. V. Chudnovsky, Applications of Padé approximations to diophantine inequalities in values of G-functions, in: Lecture Notes in Math. 1135, Springer, Berlin, 1985, 9-51. | Zbl 0561.10016

[004] [5] G. V. Chudnovsky, On some applications of diophantine approximations, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), 1926-1930. | Zbl 0544.10034

[005] [6] A. I. Galochkin, Estimates from below of polynomials in the values of analytic functions of a certain class, Mat. Sb. 95 (137) (1974), 396-417 (in Russian); English transl.: Math. USSR-Sb. 24 (1974), 385-407.

[006] [7] A. B. Shidlovskiĭ, Transcendental Numbers, Walter de Gruyter, Berlin, 1989.

[007] [8] C. L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss., Phys. Math. Kl. nr. 1 (1929). | Zbl 56.0180.05

[008] [9] K. Väänänen, On linear forms of a certain class of G-functions and p-adic G-functions, Acta Arith. 36 (1980), 273-295 | Zbl 0369.10021