Predictive criteria for the representation of primes by binary quadratic forms
Joseph B. Muskat ; Blair K. Spearman ; Kenneth S. Williams
Acta Arithmetica, Tome 69 (1995), p. 215-278 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:206750
@article{bwmeta1.element.bwnjournal-article-aav70i3p215bwm,
     author = {Joseph B. Muskat and Blair K. Spearman and Kenneth S. Williams},
     title = {Predictive criteria for the representation of primes by binary quadratic forms},
     journal = {Acta Arithmetica},
     volume = {69},
     year = {1995},
     pages = {215-278},
     zbl = {0821.11026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav70i3p215bwm}
}
Joseph B. Muskat; Blair K. Spearman; Kenneth S. Williams. Predictive criteria for the representation of primes by binary quadratic forms. Acta Arithmetica, Tome 69 (1995) pp. 215-278. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav70i3p215bwm/

[000] [1] S. Arno, The imaginary quadratic fields of class number 4, Acta Arith. 60 (1992), 321-334. | Zbl 0760.11033

[001] [2] P. Barrucand and H. Cohn, Note on primes of type x² + 32y², class number, and residuacity, J. Reine Angew. Math. 238 (1969), 67-70. | Zbl 0207.36202

[002] [3] J. A. Brandler, Residuacity properties of real quadratic units, J. Number Theory 5 (1973), 271-286. | Zbl 0272.12002

[003] [4] E. Brown, The power of 2 dividing the class-number of a binary quadratic discriminant, J. Number Theory 5 (1973), 413-419. | Zbl 0273.12005

[004] [5] E. Brown, Class numbers of quadratic fields, Istituto Nazionale di alta Matematica, Symposia Mathematica (Bologna) 15 (1975), 403-411.

[005] [6] H. Cohn, A Second Course in Number Theory, Wiley, New York, 1962.

[006] [7] P. E. Conner and J. Hurrelbrink, Class Number Parity, World Sci., Singapore, 1988.

[007] [8] D. A. Cox, Primes of the Form x² + ny²; Fermat, Class Field Theory and Complex Multiplication, Wiley, New York, 1989.

[008] [9] P. G. L. Dirichlet, Recherches sur les diviseurs premiers d'une classe de formules du quatrième degré, J. Reine Angew. Math. 3 (1828), 35-69.

[009] [10] D. R. Estes and G. Pall, A reconsideration of Legendre-Jacobi symbols, J. Number Theory 5 (1973), 433-434. | Zbl 0268.10004

[010] [11] C. F. Gauss, Disquisitiones Arithmeticae, English translation by Arthur A. Clarke, Yale University Press, 1966.

[011] [12] R. H. Hudson and K. S. Williams, Congruences for representations of primes by binary quadratic forms, Acta Arith. 41 (1982), 311-322. | Zbl 0493.10007

[012] [13] P. Kaplan, K. S. Williams, and Y. Yamamoto, An application of dihedral fields to representations of primes by binary quadratic forms, Acta Arith. 44 (1984), 407-413. | Zbl 0553.10018

[013] [14] P. A. Leonard and K. S. Williams, A representation problem involving binary quadratic forms, Arch. Math. (Basel) 36 (1981), 53-56. | Zbl 0437.10009

[014] [15] J. B. Muskat, On simultaneous representations of primes by binary quadratic forms, J. Number Theory 19 (1984), 263-282. | Zbl 0547.10003

[015] [16] J. B. Muskat and A. L. Whiteman, The cyclotomic numbers of order twenty, Acta Arith. 17 (1970), 185-216. | Zbl 0216.30801

[016] [17] L. Rédei and H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math. 170 (1933), 69-74 | Zbl 59.0192.01