@article{bwmeta1.element.bwnjournal-article-aav70i3p209bwm, author = {Irving Kaplansky}, title = {Ternary positive quadratic forms that represent all odd positive integers}, journal = {Acta Arithmetica}, volume = {69}, year = {1995}, pages = {209-214}, zbl = {0817.11024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav70i3p209bwm} }
Irving Kaplansky. Ternary positive quadratic forms that represent all odd positive integers. Acta Arithmetica, Tome 69 (1995) pp. 209-214. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav70i3p209bwm/
[000] [1] H. Brandt und O. Intrau, Tabelle reduzierten positiver ternärer quadratischer Formen, Abh. Sächs. Akad. Wiss. Math.-Nat. Kl. 45 (1958), no. 4, MR 21, 11493. | Zbl 0082.03803
[001] [2] L. E. Dickson, History of the Theory of Numbers, Vol. II, Chelsea reprint, 1952.
[002] [3] P. R. Halmos, Note on almost-universal forms, Bull. Amer. Math. Soc. 44 (1938), 141-144. | Zbl 0018.10702
[003] [4] J. S. Hsia, Regular positive ternary quadratic forms, Mathematika 28 (1981), 231-238. | Zbl 0469.10009
[004] [5] G. Pall, An almost universal form, Bull. Amer. Math. Soc. 46 (1940), 291.
[005] [6] S. Ramanujan, On the expression of a number in the form ax²+by²+cz²+du², Proc. Cambridge Philos. Soc. 19 (1917), 11-21; Collected Works, 169-178. | Zbl 46.0240.01
[006] [7] M. F. Willerding, Determination of all classes of positive quaternary quadratic forms which represent all positive integers, Bull. Amer. Math. Soc. 54 (1948), 334-337. | Zbl 0032.26603